首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of catecholamines on intracellular Ca2+concentrations ([Ca2+]i) in single acutely dissociated bovine adrenal medulla endothelial cells (BAMECs) were measured using the intracellular fluorescent probe Fluo-3 AM. 100 m epinephrine or norepinephrine induced a biphasic [Ca2+]i rise with an initial peak followed by a delayed phase. 10 m phenylephrine (1-adrenergic agonist) caused a [Ca2+]i rise similar to that evoked by catecholamines. The increase in [Ca2+]i induced by 10 m phenylephrine was reverted by 10 m phenoxybenzamine (-adrenergic antagonist). Neither isoproterenol (-adrenergic agonist) nor clonidine (2-adrenergic agonist) induced [Ca2+]i rise. The initial peak was insensitive to zero external Ca2+ and it was abolished after Ca2+ internal storages were emptied by 10 mM caffeine. The delayed phase was reduced to near zero by external Ca2+ removal. These results indicate that BAMECs possess 1-adrenergic receptors associated to both the release of caffeine-sensitive intracellular Ca2+ stores and the entry of extracellular Ca2+ We suggest that chromaffin cell secretion may activate BAMECs in vivo through an increase in [Ca2+]i which could induce the secretion of vasoactive factors allowing a rapid entry of hormones into the circulation. (Mol Cell Biochem 000: 000-000,1999)  相似文献   

2.
Synaptosomal membranes accumulate 3–6 times more Ca2+ in the presence of ATP (50–1000 M) than basal Ca2+ accumulation (-ATP). The location of this Ca2+ accumulation appears to reside on the cytosolic face of the synaptosome since lysed synaptosomes accumulate 4-times more Ca2+ than intact synaptosomes. The inclusion of mitochondrial inhibitors, oligomycin (0.7 g/ml), sodium azide (100 M) and dinitrophenol (100 M) differentiate mitochondrial from nonmitochondrial Ca2+ accumulation under conditions that are [Ca2+]- and ATP-dependent. In the presence of low concentrations of ATP (<150 M) and Ca free 2+ (2.5 or 6.8 M), Ca2+ accumulation occurs as one process in both lysed synaptosomal membranes and purified synaptic plasma membranes in the presence and/or absence of MI. When ATP levels are increased (>200 M), the Ca2+ accumulation process remains independent of the presence of mitochondrial inhibitors when Ca free 2+ =2.5 M. When Ca free 2+ is increased to 6.8 M, mitochondrial inhibitors differentiate mitochondrial from nonmitochondrial accumulation. These studies suggest that optimal conditions for the measurement of Ca2+ accumulating mechanisms in synaptosomal membranes depend on both [Ca2+] and ATP. Use of these assay conditions provide evidence that ATP-dependent Ca2+ uptake may be a viable mechanism for the regulation of synaptosomal Ca2+ levels.  相似文献   

3.
Summary In internodal cells ofLamprothamnium succinctum, turgor regulation in response to hypotonie treatment is inhibited by lowering external Ca2+ concentration ([Ca2+]e) from 3.9 (normal) to 0.01 (low) mM. In order to clarify whether a change in the cytoplasmic free Ca2+ concentration ([Ca2+]c) is involved in turgor regulation, the Ca2+ sensitive protein aequorin was injected into the cytoplasm of internodal cells. A large transient light emission was observed upon hypotonic treatment under normal [Ca2+]e but not under low [Ca2+]e. Thus hypotonic treatment induces a transient increase in [Ca2+]c under normal [Ca2+]e but not under low [Ca2+]e.Abbreviations ASW artificial sea water - i cellular osmotic pressure - [Ca2+]c cytoplasmic free Ca2+ concentration - EDTA ethylenediamine-tetraacetic acid - EGTA ethylenglycol-bis(-aminoethyl ether(N,N-tetraacetic acid - [Ca2+]e external Ca2+ concentration - e external osmotic pressure - GM glass micropipette - GP glass plate - HEPES N-2-hydroxyethylpiperazine-N-2-ethansulfonic acid - MS microscope stage - OL objective lens - PIPES piperazine-N-N-bis(2-ethanesulfonic acid) - W Weight  相似文献   

4.
We investigated whether amyloid--peptide (A1–42) has an effect on the elevations of the intracellular concentration of Ca2+ ions ([Ca2+]i) induced by depolarizations of NG108-15 cells and on related Ca2+ channels. A1–42 (10-1000 nM) had no immediate effect on depolarization-induced [Ca2+]i elevations. [Ca2+]i increases were slightly diminished in cells grown in the presence of 100 or 1000 nM A1–42. Nifedipine (1 M) reduced these elevations equally in cells grown in the absence or presence of A1–42. In contrast, the ability of -conotoxin GVIA to diminish the depolarization-induced [Ca2+]i responses became lost in cells grown in the presence of 100 nM A1–42. This indicates that the influx of calcium through the N-type Ca2+ channels was compromised by the chronic exposure of cells to a submicromolar concentration of A1–42, presumably because of impairement of their function or diminished expression. This may be important in the pathogeny of Alzheimer's dementia in view of the pivotal role of N-type Ca2+ channels in neurotransmitter release.  相似文献   

5.
Fedirko  N.  Vats  Ju.  Klevets  M.  Kruglikov  I.  Voitenko  N. 《Neurophysiology》2002,34(2-3):127-129
We showed that 5 M acetylcholine (ACh) and 100 M norepinephrine (NE) cause increases in the total Ca2+ content in acinar cells by 30 and 87% and in the exocytosis intensity by 15 and 20%, respectively. Application of 5 M ACh and 100 M NE increased the free cytosolic Ca2+ concentration ([Ca2+] i ) by 87 ± 2 and 140 ± 7 nM, respectively. Application of ACh and NE in a Ca2+-free external solution caused a [Ca2+] i increase that was 40 and 67% lower than in physiological solution. We postulate that the exocytosis developing upon neural stimulation of the gland results from generation of Ca2+ transients that are spreading from the basal to the apical region of the exocrine cell, where secretory granules are concentrated.  相似文献   

6.
Preparations of synaptosomes isolated in sucrose or in Na+-rich media were compared with respect to internal pH (pH1), internal Ca2+ concentration ([Ca2+]i), membrane potential and45Ca2+ uptake due to K+ depolarization and Na+/Ca2+ exchange. We found that synaptosomes isolated in sucrose media have a pHi of 6.77±0.04 and a [Ca2+]i of about 260 nM, whereas synaptosomes isolated in Na+-rich ionic media have a pHi of 6.96±0.07 and a [Ca2+]i of 463 nM, but both types of preparations have similar membrane potentials of about –50 mV when placed in choline media. The sucrose preparation takes up Ca2+ only by voltage sensitive calcium channels (VSCC'S) when K+-depolarized, while the Na+-rich synaptosomes take up45Ca2+ both by VSCC'S and by Na+/Ca2+ exchange. The amiloride derivative 2, 4 dimethylbenzamil (DMB), at 30 M, inhibits both mechanisms of Ca2+ influx, but 5-(N-4-chlorobenzyl)-2, 4 dimethylbenzamil (CBZ-DMB), at 30 M, inhibits the Ca2+ uptake by VSCC'S, but not by Na+/Ca2+ exchange. Thus, DMB and CBZ-DMB permit distinguishing between Ca2+ flux through channels and through Na+/Ca2+ exchange. We point out that the different properties of the two types of synaptosomes studied account for some of the discrepancies in results reported in the literature for studies of Ca2+ fluxes and neurotransmitter release by different types of preparations of synaptosomes.Abbreviations used BCECF 2,7-Biscarboxyethyl-5(6)-carboxyfluorescein - BCECF/AM acetoxymethyl ester of BCECF - [Ca2+]i Internal free calcium ion concentration - CBZ-DMB 5-(N-4-chlorobenzyl)-2,4-dimethylbenzamil - DMB 2, 4-dimethylbenzamil - DMSO dimethyl sulfoxide - Indo-1/AM acetoxymethyl ester of Indo-1 - MES 2-|N-Morpholino|ethanesulfonic acid - NMG N-methyl-D-glucamine - pHi internal pH - TPP+ tetraphenylphosphonium - p plasma membrane potential  相似文献   

7.
Although low Na+ is known to increase the intracellular Ca2+ concentration ([Ca2+]i) in cardiac muscle, the exact mechanisms of low Na+-induced increases in [Ca2+]i are not completely defined. To gain information in this regard, we examined the effects of low Na+ (35 mM) on freshly isolated cardiomyocytes from rat heart in the absence and presence of different interventions. The [Ca2+]i in cardiomyocytes was measured fluorometrically with Fura-2 AM. Following a 10 min incubation, the low Na+-induced increase in [Ca2+]i was only observed in cardiomyocytes depolarized with 30 mM KCl, but not in quiescent cardiomyocytes. In contrast, low Na+ did not alter the ATP-induced increase in [Ca2+]i in the cardiomyocytes. This increase in [Ca2+]i due to low Na+ and elevated KCl was dependent on the extracellular concentration of Ca2+ (0.25–2.0 mM). The L-type Ca2+-channel blockers, verapamil and diltiazem, at low concentrations (1 M) depressed the low Na+, KCl-induced increase in [Ca2+]i without significantly affecting the response to low Na+ alone. The low Na+, high KCl-induced increase in [Ca2+]i was attenuated by treatments of cardiomyocytes with high concentrations of both verapamil (5 and 10 M), and diltiazem (5 and 10 M) as well as with amiloride (5–20 M), nickel (1.25–5.0 mM), cyclopiazonic acid (25 and 50 M) and thapsigargin (10 and 20 M). On the other hand, this response was augmented by ouabain (1 and 2 mM) and unaltered by 5-(N-methyl-N-isobutyl) amiloride (5 and 10 M). These data suggest that in addition to the sarcolemmal Na+–Ca2+ exchanger, both sarcolemmal Na+–K+ATPase, as well as the sarcoplasmic reticulum Ca2+-pump play prominent roles in the low Na+-induced increase in [Ca2+]i. (Mol Cell Biochem 263: 151–162, 2004)  相似文献   

8.
In order to investigate the effect of transmembrane Ca2+ gradient on Gs mediated coupling of -AR and adenylyl cyclase, -AR from duck erythrocytes and Gs and adenylyl cyclase from bovine brain cortices were co-reconstituted into asolectin liposomes with different transmembrane Ca2+ gradient. These proteoliposomes were proven to be impermeable to water-soluble substances. The results obtained indicate that a physiological transmembrane Ca2– gradient (1000-fold) is essential for higher stimulation of adenylyl cyclase by hormone-activated -AR via coupling to Gs and can be further enhanced by the decrease of such Ca2+ gradient within certain range (100 fold) following Ca2+ influx into cells during signal transduction. Fluorescence polarization of DPH revealed that transmembrane Ca2+ gradient modulates adenylyl cyclase and its stimulation by hormones through mediating a change in lipid fluidity. Correspondent conformational changes of -AR were also detected from the fluorescence spectra and quenching of Acrylodan-labelled -AR in those proteoliposomes. It is suggested that a proper transmembrane Ca2+ gradient is essential for the optimal fluidity of the phospholipid bilayer in the proteoliposomes, which favors the formation of a suitable conformation of the reconstituted -AR and thus promotes the stimulation of adenylyl cyclase activities by hormone-activated -AR via Gs.Abbreviations ATP adenosine triphosphate - -AR -adrenergic receptors - AC adenylyl cyclase - DHA dihydroalprenolol - DPH diphenylhexatriene - [Ca2+]i Ca2+ concentration inside proteoliposomes - [Ca2+]o Ca2+ concentration outside proteoliposomes - cAMP cyclic adenosine monophosphate - DTT Dithiothreitol - FS fluorescein sulfonate - Gs Stimulatory GTP-binding protein - GTP guanosine triphosphate - GTPS guanosine 5-O-(3-thiotriphosphate) - kDa kilodalton - SDS sodium dodecyl sulfate - Tris N-tris(hydroxymethyl)aminomethane  相似文献   

9.
Summary We have investigated muscarinic receptor-operated Ca2+ mobilization in a salivary epithelial cell line, HSG-PA, using an experimental approach which allows independent evaluation of intracellular Ca2+ release and extracellular Ca2+ entry. The carbachol (Cch) dose response of intracellular Ca2+ release indicates the involvement of a single, relatively low-affinity, muscarinic receptor site (K 0.510 or 30 m, depending on the method for [Ca2+] i determination). However, similar data for Ca2+ entry indicate the involvement of two Cch sites, one consistent with that associated with Ca2+ release and a second higher affinity site withK 0.52.5 m. In addition, the Ca2+ entry response observed at lower concentrations of Cch (2.5 m) was completely inhibited by membrane depolarization induced with high K+ (>55mm) or gramicidin D (1 m), while membrane depolarization had little or no effect on Ca2+ entry induced by 100 m Cch. Another muscarinic agonist, oxotremorine-M (100 m; Oxo-M), like Cch, also induced an increase in the [Ca2+] i of HSG-PA cells (from 72±2 to 104±5nm). This response was profoundly blocked (75%) by the inorganic Ca2+ channel blocker La3+ (25–50 m) suggesting that Oxo-M primarily mobilizes Ca2+ in these cells by increasing Ca2+ entry. Organic Ca2+ channel blockers (verapamil or diltiazem at 10 m, nifedipine at 1 m), had no effect on this response. The Oxo-M induced Ca2+ mobilization response, like that observed at lower doses of Cch, was markedly inhibited (70–90%) by membrane depolarization (high K+ or gramicidin D). At 100 m Cch the formation of inositol trisphosphate (IP3) was increased 55% above basal levels. A low concentration of carbachol (1 m) elicited a smaller change in IP3 formation (25%), similar to that seen with 100 m Oxo-M (20%). Taken together, these results suggest that there are two modes of muscarinic receptor-induced Ca2+ entry in HSG-PA cells. One is associated with IP3 formation and intracellular Ca2+ release and is independent of membrane potential; the other is less dependent on IP3 formation and intracellular Ca2+ release and is modulated by membrane potential. This latter pathway may exhibit voltage-dependent gating.  相似文献   

10.
A method has been developed for the preparation of zoospores from Phytophthora palmivora which allows the ionic composition of the suspension medium to be closely controlled. Sub-micromolar concentrations of calcium ions have been shown to play a key role in maintaining the zoospore state and in the transition to the cyst stage. Restriction of free Ca2+ to between 0.2 and 1 M resulted in zoospores which could be maintained for several hours before they finally encysted and germinated. When exposed to citrus-pectin, or 3 mM SrCl2, or to vigorous shaking, these zoospores underwent rapid synchronous encystment. At free Ca2+ concentrations below 0.1 M, zoospores lysed slowly. If exposed to inducers of encystment before lysis had occurred, the zoospores failed to respond to pectin or to vigorous shaking. However, they did differentiate in response to SrCl2 addition. Provided the free Ca2+ was maintained between 0.02 and 0.2 M, zoospores survived gentle centrifugation, a procedure which previously had resulted in encystment.Abbreviations IM (ion-mix) release medium containing 100 M KCl, 10 M CaCl2, and 10 M MgCl2  相似文献   

11.
The regulation of insulin secretion from RINm5F cells exposed to high voltage discharge has been investigated. Electron microscopy revealed that the overall structure of the cells was preserved after permeabilization. In this preparation insulin release was stimulated by Ca2+ (EC50=2.4 M). The stable GTP analogue GTPS enhanced secretion both at intermediate (nano- to micromolar) and vanishingly low (<10 pM) Ca2+ concentrations. At optimal Ca2+ (10 M) the effect of GTPS was greatly reduced. We investigated whether the secretory response to GTP analogues was mediated by any of three enzyme systems regulated by GTP-binding proteins, i.e. generation of cyclic AMP by adenylate cyclase, of diacylglycerol by phospholipase C and of arachidonic acid by phospholipase A2. The involvement of these messenger systems could be excluded as (i) cyclic AMP only had minor, Ca2+ dependent effects, (ii) phospholipase C was not activated in the absence of Ca2+ and insulin secretion due to the phorbol ester TPA displayed a different Ca2+ dependency, (iii) arachidonic acid did not elicit Ca2+ independent insulin secretion. These results, taken together with the finding that insulin secretion due to Ca2+ or TPA is attenuated by the inhibitory guanine nucleotide GDPS, suggest the existence of a regulatory site in exocytosis which is sensitive to guanine nucleotides.Abbreviations InsP3 inositol trisphosphate - Ptd-InsP2 phosphatidylinositol 4,5-bisphosphate - GTPS guanosine 5-(3-O-thio)triphosphate - GDPS guanosine 5-(2-O-thio)diphosphate - Gpp(NH)p guanyl-5-yl imidodiphosphate - TPA 12-O-tetradecanoylphorbol-13-acetate - OAG 1-oleoyl-2-acetylglycerol - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - EGTA (ethylenebis(oxyethylenenitrilo)tetraacetic acid - DAG diacylglycerol - [Ca2+]i cytosolic free Ca2+ concentration  相似文献   

12.
Summary The relationship between the external Ca2+ concentrations [Ca2+]0 and the electrical tolerance (breakdown) in theChara plasmalemma was investigated. When the membrane potential was negative beyond –350–400 mV (breakdown potential, BP), a marked inward current was observed, which corresponds to the so-called punch-through (H.G.L. Coster,Biophys. J. 5:669–686, 1965). The electrical tolerance of theChara plasmalemma depended highly on [Ca2+]0. Increasing [Ca2+]0 caused a more negative and decreasing it caused a more positive shift of BP. BP was at about –700 mV in 200 M La3+ solution. [Mg2+]0 depressed the membrane electrical tolerance which was supposed to be due to competition with Ca2+ at the Ca2+ binding site of the membrane. Such a depressive effect of Mg2+ was almost masked when the [Ca2+]0/[Mg2+]0 ratio was roughly beyond 2.  相似文献   

13.
Evidence indicates that, in addition to the Ltype Ca2+ channel blockade, Ca2+antagonists target other functions including the Ca2+pumps. This study was conducted to test the possibility that the reported inhibition of heart sarcolemmal (SL) and sarcoplasmic reticular (SR) Ca2+pumps by verapamil and diltiazem could be due to druginduced depression of phosphatidylethanolamine (PE) Nmethylation which modulates these Ca2+transport systems. Three catalytic sites individually responsible for the synthesis of PE monomethyl (site I), dimethyl (site II) and trimethyl (phosphatidylcholine (PC), site III) derivates were examined in SL and SR membranes by employing different concentrations of SadenosylLmethionine (AdoMet). Total methyl group incorporation into SL PE, in vitro, was significantly depressed by 10–6–10–3 M verapamil or diltiazem at site III. The catalytic activity of site I was inhibited by 10–3 M verapamil only, whereas the site II activity was not affected by these drugs. The inhibition induced by verapamil or diltiazem (10–5 M) was associated with a depression of the Vmax value without any change in the apparent affinity for AdoMet. Both drugs decreased the SR as well as mitochondrial PE Nmethylation at site III. A selective depression of site III activity was also observed in SL isolated from hearts of rats treated with verapamil in vivo. Furthermore, administration of [3H-methyl]methionine following the treatment of animals with verapamil, reduced the synthesis of PC by Nmethyltransferase. Verapamil also depressed the N-methylation-dependent positive inotropic effect induced by methionine in the isolated Langendorff heart. Both agents depressed the SL Ca2+pump and although diltiazem also inhibited the SR Ca2+pump, verapamil exerted a stimulatory effect. In addition, verapamil decreased SR Ca2+-release. These results suggest that verapamil and diltiazem alter the cardiac PE Nmethyltransferase system. This action is apparently additional to the drugs' effect on Ltype Ca2+ channels and may serve as a biochemical mechanism for the drugs' inhibition of the cardiac Ca2+pumps and altered cardiac function.  相似文献   

14.
Mouse neuroblastoma x rat glioma hybrid NG108-15 and mouse neuroblastoma x embryonic hamster brain NCB20 cells were transfected with a construct containing a human 2 adrenoceptor cDNA under the control of the actin promoter. Clones were selected on the basis of resistance to geneticin sulphate and those expressing a range of levels of the receptor expanded for further study. Membranes from a clone of NG108-15 cells expressing high levels of the receptor (N22) but not one expressing only low levels of the receptor (N17) exhibited a markedly elevated adenylyl cyclase activity when measured in the presence of Mg2+ compared to wild type cells. This was not due to elevated levels of the adenylyl cyclase catalytic moiety however as there was no difference in these membranes when the adenylyl cyclase activity was measured in the presence of Mn2+. The elevated basal activity was partially reversed by addition of the -adrenoceptor antagonist propranolol. Agonist activation of N22 but not N17 cells led to a large selective down-regulation of cellular Gs levels which was independent of the generation of cyclic AMP. Isoprenaline stimulation of adenylyl cyclase activity and of the specific high affinity binding of [3H] forskolin was achieved with substantially greater potency (some 30 fold) in N22 cell membranes than in N17. By contrast agonist activation of the endogenously expressed IP prostanoid receptor caused stimulation of adenylyl cyclase and stimulation of high affinity [3H] forskolin binding which was equipotent in each of N22, N17 and wild type NG108-15 cells. Agonist activation of the IP prostanoid receptor caused an equivalent degree of Gs down-regulation in each cell type. Expression of an epitope tagged variant of Gs in NG108-15 cells resulted in prostanoid agonist-induced down-regulation of this polypeptide in a manner indistinguishable from that of wild type Gs. Isolation of clones of NCB20 cells expressing high levels of the 2 adrenoceptor also resulted in a specific agonist-induced down-regulation of Gs.  相似文献   

15.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

16.
Fedirko  N. V.  Klevets  M. Yu.  Kruglikov  I. A.  Voitenko  N. V. 《Neurophysiology》2001,33(4):216-223
Using a Ca2+-sensitive fluorescent indicator, fura-2/AM, we recorded calcium transients in secretory cells of isolated acini of the rat submandibular salivary gland; these transients were induced by hyperpotassium-induced depolarization (after an increase in [K+] e up to 50 mM) of the plasma membrane of the above cells. Calcium transients were significantly suppressed by 50 M nifedipine. Addition of 10 M carbonyl cyanide m-chlorophenylhydrazone to the normal extracellular solution was accompanied by a rise in [Ca2+] i , whereas when hyperpotassium solution is used the effect was less expressed. Blockers of CA2+-ATPase in the cellular membrane and in the endoplasmic reticulum, eosin Y (5 M) and cyclopiazonic acid (CPA, 5 M), respectively, evoked a significant increase in [Ca2+] i and a decrease in the K+-depolarization-induced calcium transient. Extracellular application of caffeine (2, 10, or 30 mM) was accompanied by a concentration-dependent rise in [Ca2+] i . Therefore, potassium depolarization of the plasma membrane of acinar cells of the rat submandibular salivary gland activates both the voltage-dependent Ca2+ influx and Ca2+-induced Ca2+ release from the endoplasmic reticulum; the initial level of [Ca2+] i was restored at the joint involvement of Ca2+-ATPases in the plasma membrane and the membranes of the endoplasmic reticulum and mitochondria.  相似文献   

17.
Verkhratsky  A.  Solovyova  N. 《Neurophysiology》2002,34(2-3):112-117
For many years, the endoplasmic reticulum (ER) was considered to be involved in rapid signalling events due to its ability to serve as a dynamic calcium store capable of accumulating large amounts of Ca2+ ions and of releasing them in response to physiological stimulation. Recent data significantly increased the importance of the ER as a signalling organelle, by demonstrating that the ER is associated with specific pathways regulating long-lasting adaptive processes and controlling cell survival. The ER lumen is enriched by enzymatic systems involved in protein synthesis and correcting post-translational folding of these proteins. The processes of post-translational protein processing are controlled by a class of specific enzymes known as chaperones, which in turn are regulated by the free Ca2+ concentration within the ER lumen ([Ca2+]L). At the same time, a high [Ca2+]L determines the ability of the ER to generate cytosolic Ca2+ signals. Thus, the ER is able to produce signals interacting within different temporal domains. Fast ER signals result from Ca2+ release via specific Ca2+-release channels and from rapid movements of Ca2+ ions within the ER lumen (calcium tunneling). Long-lasting signals involve Ca2+-dependent regulation of chaperones with subsequent changes in protein processing and synthesis. Any malfunctions in the ER Ca2+ homeostasis result in accumulation of unfolded proteins, which in turn activates several signalling systems aimed at appropriate compensatory responses or (in the case of severe ER dysregulation) in cellular pathology and death (ER stress responses). Thus, the Ca2+ ion emerges as a messenger molecule, which integrates various signals within the ER: fluctuations of the [Ca2+]L induced by signals originating at the level of the plasmalemma (i.e., Ca2+ entry or activation of the metabotropic receptors) regulate in turn protein synthesis and processing via generating secondary signalling events between the ER and the nucleus.  相似文献   

18.
Cerebellar granule cells (CGC) at different stages of maturation in vitro (1 or 6 DIV), were treated with 25–35 and acetyl-L-carnitine arginine amide (ST857) in presence of 25 mM KC1 in the culture medium, and neuronal viability was assessed. Three days of treatment slightly modified the survival of 1 DIV-treated cells, which degenerate and die five days later -amyloid matching. Similarly, a significative neurotoxic effect was observed on 6 DIV treated-cells after 5 days of exposure to the peptide, while the death occurred within 8 days. ST857 coincubated with 25–35 was able to rescue neurons from 25–35-induced neurotoxicity. We also studied the changes in Ca2+ homeostasis following glutamate stimulation, in control and -amyloid treated single cells, either in presence or in absence of ST857. 25–35 did not affect basal [Ca2+]i, while modified glutamate-induced [Ca2+]i increase, causing a sustained plateau phase of [Ca2+]i, that persisted after the removal of the agonist. ST857 pretreatment completely reverted this effect suggesting that, in CGC chronically treated with 25–35, ST857 could protect the cells by neurotoxic insults of the peptide likely interfering with the cellular mechanisms involved in the control of Ca2+ homeostasis.  相似文献   

19.
20.
U. Russ  F. Grolig  G. Wagner 《Planta》1991,184(1):105-112
The fluorescent calcium-sensitive dye 1-[2-amino-5-(6-carboxyindol-2-yl)-phenoxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,N,N-tetraacetic acid (indo-1) was loaded by a transplasmalemma pH gradient into filamentous cells and protoplasts of Mougeotia scalaris, such that most of the indo-1 fluorescence originated from the cytoplasm. Incubation of M. scalaris filaments in ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA)-buffered media (-log [Ca2+] (=pCa) 8 versus pCa 3) caused a consistent and significant decrease in the cytoplasmic free [Ca2+]. Pulses of the fluorescence excitation light (UV-A 365 nm, 0.7 s) caused an increase in cytoplasmic free [Ca2+] in M. scalaris that was nearly independent of the external [Ca2+] and of chloroplast dislocation by centrifugation. This calcium flux, highest in UV-A light, compared with blue or red light, probably resulted from a release of Ca2+ from intracellular stores. Increased cytoplasmic [Ca2+] may affect the velocity of chloroplast rotation since UV-A-light-mediated chloroplast movement was faster than in blue or red light. Consistently, the calcium ionophore A23187 and the calcium-channel agonist Bay-K8644 both increased the velocity of the red-light-mediated chloroplast rotation. Based on these and other observations, a Ca2+-induced decrease in cytoplasmic viscosity in Mougeotia is presumed to occur.Abbreviations EGTA ethylene glycol-bis-(-aminoethyl ether)N,N,N,N-tetraacetic acid - indo-1 1-[2-amino-5-(6-carboxyindol-2-yl)-phenoxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,N,Ntetraacetic acid - pCa log [Ca2+] - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - xG geometric mean Dedicated to Professor Wolfgang Haupt on the occasion of his 70th birthdayThis paper is part of the Ph.D. thesis of U. Russ at the Justus-Liebig-Universitat Giessen (FRG). Part of this work has been presented at a meeting on Calcium and intracellular signalling in plants in Plymouth, UK, Dec. 1990We are indebted to Dr. G. Seibold and Dipl. Phys. H. Weintraut for their advice on the technique of microspectrofluorometry and for allowing access to the microspectrophotometric facilities in the Strahlenzentrum der Justus-Liebig-Universität, Giessen, FRG. We thank Mrs. A. Quanz for reliable culture of the algae and evaluation of the videotapes. Bay-K8644 was a generous gift of Bayer AG, Wuppertal, FRG. U. russ was supported by a scholarship according to the Hessisches Graduierten Förderungsgesetz. This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号