首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Though chemokines of the CXC family are thought to play key roles in neoplastic transformation and tumor invasion, information about CXC chemokines in prostate cancer is sparse. To evaluate the involvement of CXC chemokines in prostate cancer, we analyzed the CXC coding mRNA of both chemokine ligands (CXCL) and chemokine receptors (CXCR), using the prostate carcinoma cell lines PC-3, DU-145 and LNCaP. CXCR proteins were further evaluated by Western blot, CXCR surface expression by flow cytometry and confocal microscopy. The expression pattern was correlated to adherence of the tumor cells to an endothelial cell monolayer or to extracellular matrix components. Based on growth and adhesion capacity, PC-3 and DU-145 were identified to be highly aggressive tumor cells (PC-3>DU-145), whereas LNCaP belonged to the low aggressive phenotype. CXCL1, CXCL3, CXCL5 and CXCL6 mRNA, chemokines with pro-angiogenic activity, were strongly expressed in DU-145 and PC-3, but not in LNCaP. CXCR3 and CXCR4 surface level differed in the following order: LNCaP>DU-145>PC-3. The differentiation factor, fatty acid valproic acid, induced intracellular CXCR accumulation. Therefore, prostate tumor malignancy might be accompanied by enhanced synthesis of angiogenesis stimulating CXC chemokines. Further, shifting CXCR3 and CXCR4 from the cell surface to the cytoplasm might activate pro-tumoral signalling events and indicate progression from a low to a highly aggressive phenotype.  相似文献   

2.
Proliferation plays a critical role in tumor growth when cell migration is essential to invasion. The effect of Ang III and Ang II was evaluated on these important processes. Changes in the migration potential of prostate cancer cells were investigated using Wound Healing Test and a Transwell Migration Chamber with a 3μm pore size. Cell proliferation was measured with a BrdU Assay and Countess Automated Cell Counter, thus determining the influence of angiotensins on hormone-dependent (LNCaP) and hormone-independent (DU-145) human prostate cancer lines. The influence of Ang III and Ang II on classic receptors may be inhibited by Losartan or PD123319. Test peptide modulation of the AT1 and AT2 receptors was examined by Western Blot and fluorescent immunocytochemistry. The results indicate that Ang III promotes the migration of both LNCaP and DU-145 lines, whereas Ang II stimulates this process only in androgen-independent cells. Both angiotensin peptides can induce prostate cancer cell proliferation in a time- and dose-dependent manner. The obtained results show that Ang III and Ang II can modify the expression of classic receptors, particularly AT2. These results suggest that the investigated peptide can modulate cell migration and proliferation in prostate cancer cells. Angiotensins probably have a greater influence on proliferation in the early-stage prostate cancer model than hormone-independent cell lines. Assume also that Ang II can enhance the migration tendency aggressive prostate cancer cells, while Ang III does so more effective in non-metastatic cells.  相似文献   

3.
Prostate cancer is dependent on circulating testosterone in its early stages and is treatable with radiation and surgery. However, recurrent prostate tumors advance to an androgen-independent state in which they progress in the absence of circulating testosterone, leading to metastasis and death. During the development of androgen independence, prostate cancer cells are known to increase intracellular testosterone synthesis, which maintains cancer cell growth in the absence of significant amounts of circulating testosterone. Overexpression of the androgen receptor (AR) occurs in androgen-independent prostate cancer and has been proposed as another mechanism promoting the development of androgen independence. The LNCaP-AR cell line is engineered to overexpress AR but is otherwise similar to the widely studied LNCaP cell line. We have previously shown that pomegranate extracts inhibit both androgen-dependent and androgen-independent prostate cancer cell growth. In this study, we examined the effects of pomegranate polyphenols, ellagitannin-rich extract and whole juice extract on the expression of genes for key androgen-synthesizing enzymes and the AR. We measured expression of the HSD3B2 (3beta-hydroxysteroid dehydrogenase type 2), AKR1C3 (aldo-keto reductase family 1 member C3) and SRD5A1 (steroid 5alpha reductase type 1) genes for the respective androgen-synthesizing enzymes in LNCaP, LNCaP-AR and DU-145 human prostate cancer cells. A twofold suppression of gene expression was considered statistically significant. Pomegranate polyphenols inhibited gene expression and AR most consistently in the LNCaP-AR cell line (P=.05). Therefore, inhibition by pomegranate polyphenols of gene expression involved in androgen-synthesizing enzymes and the AR may be of particular importance in androgen-independent prostate cancer cells and the subset of human prostate cancers where AR is up-regulated.  相似文献   

4.
Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.  相似文献   

5.
6.
Although curcumin has been shown to inhibit prostate tumor growth in animal models, its mechanism of action is not clear. To better understand the anti-cancer effects of curcumin, we investigated the effects of curcumin on cell survival factor Akt in human prostate cancer cell lines, LNCaP, PC-3, and DU-145. Our results demonstrated differential activation of Akt. Akt was constitutively activated in LNCaP and PC-3 cells. Curcumin inhibited completely Akt activation in both LNCaP and PC-3 cells. The presence of 10% serum decreased the inhibitory effect of curcumin in PC-3 cells whereas complete inhibition was observed in 0.5% serum. Very little or no activation of Akt was observed in serum starved DU-145 cells (0.5% serum). The presence of 10% serum activated Akt in DU-145 cells and was not inhibited by curcumin. Results suggest that one of the mechanisms of curcumin inhibition of prostate cancer may be via inhibition of Akt. To our knowledge this is the first report on the curcumin inhibition of Akt activation in LNCaP and PC-3 but not in DU-145 cells.  相似文献   

7.
Using multiple parallel sequencing on Illumina platform, we identified eight microRNAs that showed significant opposite changes of gene expression in cells of the hormone-sensitive LNCaP prostate cancer cell line and in cells of the hormone-resistant DU-145 cell line, in comparison to the microRNA expression in the normal prostate tissue cells. We found that the insulin-like growth factor 1 receptor (IGF1R) gene is a target of five microRNAs whose expression is increased in LNCaP cells and reduced in DU-145 cells.  相似文献   

8.
9.
Despite state of the art cancer diagnostics and therapies offered in clinic, prostate cancer (PCa) remains the second leading cause of cancer-related deaths. Hence, more robust therapeutic/preventive regimes are required to combat this lethal disease. In the current study, we have tested the efficacy of Andrographolide (AG), a bioactive diterpenoid isolated from Andrographis paniculata, against PCa. This natural agent selectively affects PCa cell viability in a dose and time-dependent manner, without affecting primary prostate epithelial cells. Furthermore, AG showed differential effect on cell cycle phases in LNCaP, C4-2b and PC3 cells compared to retinoblastoma protein (RB?/?) and CDKN2A lacking DU-145 cells. G2/M transition was blocked in LNCaP, C4-2b and PC3 after AG treatment whereas DU-145 cells failed to transit G1/S phase. This difference was primarily due to differential activation of cell cycle regulators in these cell lines. Levels of cyclin A2 after AG treatment increased in all PCa cells line. Cyclin B1 levels increased in LNCaP and PC3, decreased in C4-2b and showed no difference in DU-145 cells after AG treatment. AG decreased cyclin E2 levels only in PC3 and DU-145 cells. It also altered Rb, H3, Wee1 and CDC2 phosphorylation in PCa cells. Intriguingly, AG reduced cell viability and the ability of PCa cells to migrate via modulating CXCL11 and CXCR3 and CXCR7 expression. The significant impact of AG on cellular and molecular processes involved in PCa progression suggests its potential use as a therapeutic and/or preventive agent for PCa.  相似文献   

10.
Prostate cancer is one of the leading causes of death among men in the USA.
Objective:  In this study, we investigated the role of atypical protein kinase C-iota (PKC-ι) in androgen-independent prostate DU-145 carcinoma cells compared to transformed non-malignant prostate RWPE-1 cells.
Materials and methods:  Western blotting and immunoprecipitations demonstrated that PKC-ι is associated with cyclin-dependent kinase activating kinase (CAK/Cdk7) in RWPE-1 cells, but not in DU-145 cells.
Results:  Treatment of prostate RWPE-1 cells with PKC-ι silencing RNA (siRNA) decreased cell viability, cell-cycle accumulation at G2/M phase, and phosphorylation of Cdk7 and Cdk2. In addition, PKC-ι siRNA treatment caused less phosphorylation of Bad at ser-155, ser-136, and greater Bad/Bcl-xL heterodimerization, leading to apoptosis. In DU-145 cells, PKC-ι was anti-apoptotic and was required for cell survival. Treatment with PKC-ι siRNA blocked increase in cell number, and inhibited G1/S transition by accumulation of cells in G0/G1 phase. In addition to cell-cycle arrest, both RWPE-1 and DU-145 cells underwent apoptosis due to mitochondrial dysfunction and apoptosis cascades, such as release of cytochrome c, activation of caspase-7, and poly (ADP-ribose) polymerase (PARP) cleavage.
Conclusion:  Our results suggest that PKC-ι is required for cell survival in both transformed non-malignant prostate RWPE-1 cells and androgen-independent malignant prostate DU-145 cells, whereas suppressing PKC-ι lead to apoptosis in DU-145 prostate cells.  相似文献   

11.
Androgen-ablation is a most commonly prescribed treatment for metastatic prostate cancer but it is not curative. Development of new strategies for treatment of prostate cancer is limited partly by a lack of full understanding of the mechanism by which androgen regulates prostate cancer cell proliferation. This is due, mainly, to the limitations in currently available experimental models to distinguish androgen/androgen receptor (AR)-induced events specific to proliferation from those that are required for cell viability. We have, therefore, developed an experimental model system in which both androgen-sensitive (LNCaP) and androgen-independent (DU145) prostate cancer cells can be reversibly blocked in G(0)/G(1) phase of cell cycle by isoleucine deprivation without affecting their viability. Pulse-labeling studies with (3)H-thymidine indicated that isoleucine-deprivation caused LNCaP and DU145 cells to arrest at a point in G(1) phase which is 12-15 and 6-8 h, respectively, before the start of S phase and that their progression into S phase was dependent on serum factors. Furthermore, LNCaP, but not DU145, cells required AR activity for progression from G(1) into S phase. Western blot analysis of the cell extracts prepared at regular intervals following release from isoleucine-block revealed remarkable differences in the expression of cyclin E, p21(Cip1), p27(Kip1), and Rb at the protein level between LNCaP and DU145 cells during progression from G(1) into S phase. However, in both cell types Cdk-2 activity associated with cyclin E and cyclin A showed an increase only when the cells transited from G(1) into S phase. These observations were further corroborated by studies using exponentially growing cells that were enriched in specific phases of the cell cycle by centrifugal elutriation. These studies demonstrate usefulness of the isoleucine-deprivation method for synchronization of androgen-sensitive and androgen-independent prostate cancer cells, and for examining the role of androgen and AR in progression of androgen-sensitive prostate cancer cells from G(1) into S phase.  相似文献   

12.
The stilbenoids E-resveratrol (E-3,5,4'-trihydroxystilbene, 1), E-3,5,4'-trimethoxystilbene (2), E-3,4,4'-trimethoxystilbene (3) and E-3,4'-dimethoxy-5-hydroxystilbene (4) were converted by photoisomerization to their corresponding Z-isomers 5-8. Compounds 1-8 were subjected to antiproliferative activity bioassays towards a set of four different human cancer cell lines, namely DU-145 (androgen not responsive human prostate tumor), LNCaP (androgen responsive human prostate tumor), M-14 (human melanoma) and KB (human mouth epidermoid carcinoma). The methylated analogues of 1 are more active than the natural lead in the majority of bioassays. The most active compound was Z-3,5,4'-trimethoxystilbene (6), which showed against DU-145 and LNCaP cells GI50 values close to those of the anticancer drug vinorelbine; 6 resulted more active than its E-isomer 2 towards DU-145, LNCaP and especially KB cell lines. A number of methylated Z-isomers displayed a higher activity than their E-isomers, but E-resveratrol (1) was more active than Z-resveratrol (5) towards all the tested cell lines.  相似文献   

13.
We compared the effects of chelerythrine (CHE) and sanguinarine (SA) on human prostate cancer cell lines (LNCaP and DU-145) and primary culture of human gingival fibroblasts. CHE and SA treatment of cell lines for 24 h resulted in (1) inhibition of cell viability in a dose-dependent manner in all tested cells (as evaluated by MTT test and bromodeoxyuridine incorporation assay); (2) dose-dependent increase in DNA damage in all tested cells (as evaluated by DNA comet assay); (3) changes in apoptosis (assessed by western blot analysis and TUNEL assay); and (4) significant induction of cyclin kinase inhibitors p21Waf1/Cip1 and p27Kip1 in prostate cancer cells (identified by western blot analysis). Our study demonstrates that CHE had significant cytotoxic effect, independent of p53 and androgen status, on human prostate cancer cell lines. Normal gingival fibroblasts and DU-145 cells were more sensitive to the treatment with both alkaloids than were LNCaP cells. CHE and SA may be prospective natural molecules for use in the treatment of prostate cancer owing to their involvement in apoptosis and cell cycle regulation.  相似文献   

14.
Alimirah F  Chen J  Basrawala Z  Xin H  Choubey D 《FEBS letters》2006,580(9):2294-2300
The majority of human prostate cancer cell lines, including the two "classical" cell lines DU-145 and PC-3, are reported to be androgen receptor (AR)-negative. However, other studies have provided evidence that the DU-145 and PC-3 cell lines express AR mRNA. These contradictory observations prompted us to investigate whether DU-145 and PC-3 cell lines express the androgen receptor. Using antipeptide antibodies directed against three distinct regions of the human AR protein and an improved method to detect AR protein in immunoblotting, we report that DU-145 and PC-3 cell lines express AR protein. We found that the relative levels of the AR mRNA and protein that were detected in DU-145 and PC-3 cell lines were lower than the LNCaP, an AR-positive cell line. Moreover, the antibody directed against the non-variant region (amino acids 299-315), but not the variant N- or C-terminal region (amino acids 1-20 and 900-919, respectively) of the human AR protein, detected the expression of AR in all prostate cancer cell lines. Notably, treatment of these cell lines with dihydrotestosterone (DHT) resulted in measurable increases in the AR protein levels and considerable nuclear accumulation. Although, treatment of DU-145 and PC-3 cells with DHT did not result in stimulation of the activity of an AR-responsive reporter, knockdown of AR expression in PC-3 cells resulted in decreases in p21(CIP1) protein levels, and a measurable decrease in the activity of the p21-luc-reporter. Our observations demonstrate the expression of AR protein in DU-145 and PC-3 prostate cancer cell lines.  相似文献   

15.
Hyperthermia (HT) improves the efficacy of anti-cancer radiotherapy and chemotherapy. However, HT also inevitably evokes stress responses and increases the expression of heat-shock proteins (HSPs) in cancer cells. Among the HSPs, HSP70 is known as a pro-survival protein. In this study, we investigated the sensitizing effect of pifithrin (PFT)-μ, a small molecule inhibitor of HSP70, when three human prostate cancer cell lines (LNCaP, PC-3, and DU-145) were treated with HT (43°C for 2 h). All cell lines constitutively expressed HSP70, and HT further increased its expression in LNCaP and DU-145. Knockdown of HSP70 with RNA interference decreased the viability and colony-forming ability of cancer cells. PFT-μ decreased the viabilities of all cell lines at one-tenth the dose of Quercetin, a well-known HSP inhibitor. The combination therapy with suboptimal doses of PFT-μ and HT decreased the viability of cancer cells most effectively when PFT-μ was added immediately before HT, and this combination effect was abolished by pre-knockdown of HSP70, suggesting that the effect was mediated via HSP70 inhibition. The combination therapy induced cell death, partially caspase-dependent, and decreased proliferating cancer cells, with decreased expression of c-Myc and cyclin D1 and increased expression of p21WAF1/Cip, indicating arrest of cell growth. Additionally, the combination therapy significantly decreased the colony-forming ability of cancer cells compared to therapy with either alone. Furthermore, in a xenograft mouse model, the combination therapy significantly inhibited PC-3 tumor growth. These findings suggest that PFT-μ can effectively enhance HT-induced antitumor effects via HSP70 inhibition by inducing cell death and arrest of cell growth, and that PFT-μ is a promising agent for use in combination with HT to treat prostate cancer.  相似文献   

16.
The growing incidence of prostate cancer and the traditional use of Rubus coreanus Miquel (RCM) for prostate health led us to compare RCM extracts and to test their efficacy in inhibiting the growth of prostate cancer cells differing in androgen dependency. Ethanol extracts of unripe RCM (EUR) were more effective in reducing cell viability than water extracts or ripe RCM. EUR-induced growth inhibition, as indicated by significant reductions in numbers of proliferating cells and decreases in the protein levels of proliferating cell nuclear antigen (PCNA), cyclin D1 and CDK4, was greater in the androgen-dependent LNCaP cells than in the androgen-independent DU145 cells. EUR also induced mitochondrial-mediated apoptosis in prostate cancer cells by reducing Bcl-2 and Bcl-(X)L levels, but increased Bax levels. Nevertheless, the LNCaP cells were more sensitive to EUR-induced apoptosis and displayed sub-G1 and late apoptotic cell populations, whereas the DU145 cells did not. Our findings suggest that EUR suppresses the growth of prostate cancer cells by anti-proliferative and/or pro-apoptotic effects, and that these effects are stronger in androgen-dependent cells.  相似文献   

17.
Androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, 80-90% of the patients who receive androgen ablation therapy ultimately develop recurrent tumors in 12-33 months after treatment with a median overall survival time of 1-2 years after relapse. LNCaP is a commonly used cell line established from a human lymph node metastatic lesion of prostatic adenocarcinoma. We previously established two relapsed androgen receptor (AR)-rich androgen-independent LNCaP sublines 104-R1 (androgen depleted for 12 months) and 104-R2 cells (androgen depleted for 24 months) from AR-positive androgen-dependent LNCaP 104-S cells. LNCaP 104-R1 and 104-R2 mimics the AR-positive hormone-refractory relapsed tumors in patients receiving androgen ablation therapy. Androgen treatment stimulates proliferation of 104-S cells, but causes growth inhibition and G1 cell cycle arrest in 104-R1 and 104-R2 cells. We investigated the protein expression profile difference between LNCaP 104-S vs. LNCaP 104-R1, 104-R2, PC-3, and DU-145 cells as well as examined the sensitivity of these prostate cancer cells to different chemotherapy drugs and small molecule inhibitors. Compared to 104-S cells, 104-R1 and 104-R2 cells express higher protein levels of AR, PSA, c-Myc, Skp2, BCL-2, P53, p-MDM2 S166, Rb, and p-Rb S807/811. The 104-R1 and 104-R2 cells express higher ratio of p-Akt S473/Akt, p-EGFR/EGFR, and p-Src/Src, but lower ratio of p-ERK/ERK than 104-S cells. PC-3 and DU-145 cells express higher c-Myc, Skp2, Akt, Akt1, and phospho-EGFR but less phospho-Akt and phospho-ERK. Overexpression of Skp2 increased resistance of LNCaP cells to chemotherapy drugs. Paclitaxel, androgen, and inhibitors for PI3K/Akt, EGFR, Src, or Bcl-2 seem to be potential choices for treatment of advanced prostate cancers. Our study provides rationale for targeting Akt, EGFR, Src, Bcl-2, and AR signaling as a treatment for AR-positive relapsed prostate tumors after hormone therapy.  相似文献   

18.
Extracellular matrix (ECM) remodeling is a key component of cell migration and tumor metastasis, and has been associated with cancer progression. Despite the importance of matrix remodeling, systematic and quantitative studies on the process have largely been lacking. Furthermore, it remains unclear if the disrupted tensional homeostasis characteristic of malignancy is due to initially altered ECM and tissue properties, or to the alteration of the tissue by tumor cells. To explore these questions, we studied matrix remodeling by two different prostate cancer cell lines in a three-dimensional collagen system. Over one week, we monitored structural changes in gels of varying collagen content using confocal reflection microscopy and quantitative image analysis, tracking metrics of fibril fraction, pore size, and fiber length and diameter. Gels that were seeded with no cells (control), LNCaP cells, and DU-145 cells were quantitatively compared. Gels with higher collagen content initially had smaller pore sizes and higher fibril fractions, as expected. However, over time, LNCaP- and DU-145-populated matrices showed different structural properties compared both to each other and to the control gels, with LNCaP cells appearing to favor microenvironments with lower collagen fiber fractions and larger pores than DU-145 cells. We posit that the DU-145 cells' preference for denser matrices is due to their higher invasiveness and proteolytic capabilities. Inhibition of matrix proteases resulted in reduced fibril fractions for high concentration gels seeded with either cell type, supporting our hypothesis. Our novel quantitative results probe the dynamics of gel remodeling in three dimensions and suggest that prostate cancer cells remodel their ECM in a synergistic manner that is dependent on both initial matrix properties as well as their invasiveness.  相似文献   

19.
20.
The androgen-independent human prostate adenocarcinoma cell line DU-145 proliferates in serum-free medium and produces insulin-like growth factors (IGF)-I, IGF-II, and the IGF type-1 receptor (IGF-1R). They also secrete three IGF-binding proteins (IGFBP), IGFBP-2, -3, and -4. Of these, immunoblot analysis revealed selective proteolysis of IGFBP-3, yielding fragments of 31 and 19 kDa. By using an anti-IGF-I-specific monoclonal antibody (mAb), we detect surface receptor-bound IGF-I on serum-starved DU-145 cells, which activates IGF-1R and triggers a mitogenic signal. Incubation of DU-145 cells with blocking anti-IGF-I, anti-IGF-II, or anti-IGF-I plus anti-IGF-II mAb does not, however, inhibit serum-free growth of DU-145. Conversely, anti-IGF-1R mAb and IGFBP-3 inhibit DNA synthesis. IGFBP-3 also modifies the DU-145 cell cycle, decreases p34(cdc2) levels, and IGF-1R autophosphorylation. The antiproliferative IGFBP-3 activity is not IGF-independent, since des-(1-3)IGF-I, which does not bind to IGFBP-3, reverses its inhibitory effect. DU-145 also secretes the matrix metalloproteinase (MMP)-9, which can be detected in both a soluble and a membrane-bound form. Matrix metalloproteinase inhibitors, but not serpins, abrogate DNA synthesis in DU-145 associated with the blocking of IGFBP-3 proteolysis. Overexpression of an antisense cDNA for MMP-9 inhibits 80% of DU-145 cell proliferation that can be reversed by IGF-I in a dose-dependent manner. Inhibition of MMP-9 expression is also associated with a decrease in IGFBP-3 proteolysis and with reduced signaling through the IGF-1R. Our data indicate an IGF autocrine loop operating in DU-145 cells, specifically modulated by IGFBP-3, whose activity may in turn be regulated by IGFBP-3 proteases such as MMP-9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号