首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Entomopathogenic fungi, such as Metarhizium anisopliae, for the control of arthropods, have been studied for more than 20 years. The aim of this study was to determine the best methodology to evaluate the in vitro effect of the fungus M. anisopliae on Rhipicephalus microplus tick larvae. We compared a modified Larval Packet Test (LPT) and a Larval Immersion Test (LIT). For the LPT filter papers were impregnated with 1 mL of M. anisopliae suspension in Triton X-100 at 0.02%, in concentrations of 106, 107 and 108 conidia/mL and subsequently folded to include the larval ticks. LIT was performed by immersing the larvae in M. anisopliae suspensions for 5 min using the same three concentrations, then the larvae were placed on filter paper clips. For LPT, the LT50 values obtained were 134.6, 27.2 and 24.8 days for concentrations of 106, 107 and 108 conidia/mL; and the mortality after 21 days was 17.3, 17.6 and 38%, respectively. The LT50 values of LIT were 24.5, 20 and 9.2 days with mortality after 21 days of 50.5, 64.7 and 98% for 106, 107 and 108 conidia/mL, respectively. For the same conidia concentration, LIT showed a higher mortality in a shorter time interval when compared with LPT. These differences between the methods tested must be taking into account in further screening and effect studies with M. anisopliae. The set of results shown here could optimize the protocol used to identify M. anisopliae strains pathogenic against R. microplus.  相似文献   

2.
Seventeen isolates of Metarhizium anisopliae (Metschnikoff) Sorokin and two isolates of Beauveria bassiana (Balsamo) Vuillemin were evaluated for their pathogenicity against the tobacco spider mite, Tetranychus evansi Baker & Pritchard. In the laboratory all the fungal isolates were pathogenic to the adult female mites, causing mortality between 22.1 and 82.6%. Isolates causing more than 70% mortality were subjected to dose–response mortality bioassays. The lethal concentration causing 50% mortality (LC50) values ranged between 0.7×107 and 2.5×107 conidia ml−1. The lethal time to 50% mortality (LT50) values of the most active isolates of B. bassiana and M. anisopliae strains varied between 4.6 and 5.8 days. Potted tomato plants were artificially infested with T. evansi and treated with B. bassiana isolate GPK and M. anisopliae isolate ICIPE78. Both fungal isolates reduced the population density of mites as compared to untreated controls. However, conidia formulated in oil outperformed the ones formulated in water. This study demonstrates the prospects of pathogenic fungi for the management of T. evansi.  相似文献   

3.
Rice and oat flours were analyzed as media for the production of conidia by M. anisopliae var. lepidiotum. The presence of peptone increased conidia yield regardless of the substrate used; however, the highest yield was achieved on oat flour media. The effect of oxygen on conidia production using oat-peptone medium was also studied at two levels: Normal atmosphere (21% O2) and Oxygen-rich pulses (26% O2). Maximum conidia production (4.25 × 107 conidia cm−2) was achieved using 26% O2 pulses after 156 h of culture, which was higher than 100% relative to conidial levels under normal atmosphere. Conidia yield per gram of biomass was 2.6 times higher with 26% O2 (1.12 × 107 conidia mg−1). Conidia quality parameters, such as germination and hydrophobicity, did not show significant differences (P < 0.05) between those treatments. Bioassays parameters, using Tenebrio molitor adults, were analyzed for conidia obtained in both atmospheres and data were fitted to an exponential model. The specific mortality rates were 2.22 and 1.26 days−1, whereas lethal times for 50% mortality were 3.90 and 4.31 days, for 26% O2 pulses and 21% O2 atmosphere, respectively. These results are relevant for production processes since an oxygen increase allowed superior levels of conidia by M. anisopliae without altering quality parameters and virulence toward Tenebrio molitor adults.  相似文献   

4.
Field trials were conducted to evaluate the efficacy of wheat bran bait formulations of Paranosema locustae and Metarhizium anisopliae for controlling grasshoppers in southeast Niger. Treatments consisted of wheat bran baits mixed with M. anisopliae, P. locustae + M. anisopliae or with P. locustae spores and P. locustae + sugar. Oedaleus senegalensis, Pyrgomorpha cognata and Acrotylus blondeli were the predominant species at the time of application representing ca. 94% of the total population. Bran application was done when O. senegalensis (ca. 75% of the population) was at its early developmental stages, with first, second and third instars accounting for 64–85%. Grasshopper population reduction, P. locustae prevalence and level of infections in the predominant species were monitored. Manual application of P. locustae and M. anisopliae formulated in wheat bran has proven to induce consistent pathogen infection in grasshopper populations. Population density over the three weeks monitoring, typically decreased by 44.7 ± 6.9%, 52.8 ± 8.4%, 73.7 ± 5.5% and 89.1 ± 1.8% in P. locustae, P. locustae + sugar, M. anisopliae and P. locustae + M. anisopliae treated plots respectively. Paranosema locustae prevalence in surviving adult grasshoppers at 28 after application was 48.1 ± 2.3%, 28.9 ± 4.8% and 27.4 ± 3.7%, with infection level of 6.2 ± 0.8 × 106, 2.3 ± 0.3 × 104 and 2.1 ± 0.3 × 103 spores mg−1 host weight in O. senegalensis, A blondeli and P. cognate respectively. Other species that each accounted for <2% of the community, namely Aiolopus thalassinus, A. simulatrix, Acorypha glaucopsis, Acrotylus patruelis, Anacridium melanorhodon, Diabolocatantops axillaris, Kraussaria angulifera and Schistocerca gregaria were found to show sign of infection. The results from this study suggest that wheat bran application of M. anisopliae and P. locustae alone or in combination, targeting early instars grasshopper could be a valuable option in grasshopper control programs.  相似文献   

5.
The cotton stainer bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) is an insect pest that causes heavy losses in cotton plantations. The need to reduce the use of insecticides for control of this pest has increased steadily, and Metarhizium anisopliae (Ascomycota: Clavicipitaceae) could be an important biopesticide candidate to control this pest. The effect of M. anisopliae on D. peruvianus nymphs and adults using formulations with soybean oil and Agral® was evaluated. Formulation using 10% soybean oil added to 108 conidia mL?1 (grown on used and reused rice) was the most effective for nymph and adult, causing 100% mortality 6 and 7 days after exposure, respectively. The SEM analysis of infected insects showed that M. anisopliae conidia were able to adhere anywhere on the exoskeleton, but were more abundant between the joints. Using the same rice for two batches of growth may be an option for improving commercial conidial production of M. anisopliae and may reduce overall costs. Its effect on D. peruvianus adults opens a new possibility for using this fungus as an alternative to chemical pesticides and the use of M. anisopliae in association with integrate pest management.  相似文献   

6.
Termites, Coptotermes formosanus, reared individually, were highly susceptible to the entomopathogenic fungus, Metarhizium anisopliae, while termites reared in␣groups were highly resistant. When reared in groups, the termites treated with M.␣anisopliae conidia on the body surface were groomed by their nestmates and more than 80% of the conidia were removed from the cuticle within 3 h. However, there was not a significant reduction in the numbers of conidia on the body surfaces of termites reared individually. For the termites maintained in groups, conidia were found in foreguts, midguts and hindguts, but very few conidia were detected in the guts of termites reared individually. Conidia in the alimentary tracts did not germinate, but some of were alive. As a result, it seems that the removal of foreign bodies, such as fungal conidia, from the␣cuticle is one function of termite mutual grooming behavior and that conidia removed from the cuticle are eliminated through alimentary tracts. This study indicates that mutual grooming behavior is very effective in protecting these termites from M.␣anisopliae infection.  相似文献   

7.
A genetic variant of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae, isolated from a soil in Alberta, Canada, from a location with a history of severe grasshopper infestations, was evaluated for pathogenicity in bioassays of living grasshoppers. Mortality in treated individuals drawn from a laboratory colony was 99% (LT50 = 6.7 days, LT90 = 9.6 days) at 12 days post-inoculation compared to 100% (LT50 = 4.1 days, LT90 = 5.8 days) mortality at 8 days in insects exposed to a commercial isolate of M. anisopliae var. acridum (IMI 330189). Experimental infection of field-collected grasshoppers under laboratory conditions with the native isolate of M. anisopliae var. anisopliae resulted in 100% (LT50 = 4.4 days, LT90 = 5.4 days) mortality attained within 7 days compared to 100% (LT50 = 4.7 days, LT90 = 6.3 days) mortality in 9 days in insects treated with M. anisopliae var. acridum. Amplification of fungal genomic DNA from the indigenous isolate with primers for the specific detection of M. anisopliae var. anisopliae produced a product almost 300 bp larger than expected based on previously known isolates. This is the first demonstration of a highly virulent, indigenous non-chemical control agent of grasshoppers in North America. GenBank Accession Nos. DQ342236, DQ342237.  相似文献   

8.
Li Y  Cai SH 《Current microbiology》2011,62(5):1400-1404
A set of six specific primers was designed by targeting intergenic spacer region (IGS) sequences. With Bst DNA polymerase, the products could be clearly amplified for 60 min at 62°C in a simple water bath. The sensitivity of the loop-mediated isothermal amplification (LAMP) for detecting Metarhizium anisopliae var. anisopliae was about 0.01 pg fungal DNA per reaction (equivalent to 27 conidia). LAMP products could be judged with agar gel or naked eye after addition of SYBR Green I. There were no cross reactions with other fungal isolates indicating high specificity of the LAMP. The LAMP could detect the presence of M. anisopliae var. anisopliae from soil. The detection limits for M. anisopliae var. anisopliae of LAMP reaction was 50 conidia per reaction in soil.  相似文献   

9.
Mycoinsecticides application within Integral Pest Management requires high quantities of conidia, with the proper quality and resistance against environmental conditions. Metarhizium anisopliae var. lepidiotum conidia were produced in normal atmospheric conditions (21 % O2) and different concentrations of oxygen pulses (16, 26, 30, and 40 %); conidia obtained under hypoxic conditions showed significantly lower viability, hydrophobicity, and virulence against Tenebrio molitor larvae or mealworm, compared with those obtained under normal atmospheric conditions. Higher concentrations of oxygen (26 and 30 %) improved conidial production. However, when a 30 % oxygen concentration was applied, maximal conidial yields were obtained at earlier times (132 h) relative to 26 % oxygen pulses (156 h); additionally, with 30 % oxygen pulses, conidia thermotolerance was improved, maintaining viability, hydrophobicity, and virulence. Although conidial production was not affected when 40 % oxygen pulses were applied, viability and virulence were diminished in those conidia. In order to find a critical time for mycelia competence to respond to these oxidant conditions, oxygen pulses were first applied either at 36, 48, 60, and 72 h. A critical time of 60 h was determined to be the best time for the M. anisopliae var. lepidiotum mycelia to respond to oxygen pulses in order to increase conidial production and also to maintain the quality features. Therefore, oxygen-enriched (30 %) pulses starting at 60 h are recommended for a high production without the impairment of quality of M. anisopliae var. lepidiotum conidia.  相似文献   

10.
Long-term persistence of entomopathogenic fungi as biopesticides is a major requirement for successful industrialization. Corn oil carrier was superior in maintaining germination rates of Isaria fumosorosea SFP-198 conidia during exposure to 50°C for 2 h, when compared with other oils, such as soybean oil, cottonseed oil, paraffin oil, and methyl oleate. The corn oil-based conidial suspension (91.6% germination) was also better in this regard than conidial powder (28.4% germination) after 50°C for 8 h. Long-term storage stabilities of corn oil-based conidial suspension and conidial powder at 4 and 25°C for 24 months were investigated, based on the correlation of germination rate with insecticidal activity against greenhouse whiteflies, Trialeurodes vaporariorum. Viability of conidia in corn oil was more than 98.4% for up to 9 months of storage at 25°C, and followed by 23% at 21 months. However, conidial powder had only 34% viability after 3 months of storage at 25°C, after which its viability rapidly decreased. The two conidial preparations stored at 4°C had better viabilities than those at 25°C, showing the same pattern as above. These results indicate that corn oil-based conidial suspension can be used to improve conidial persistence in long-term storage and be further applied to the formulation of other thermo-susceptible biological control agents.  相似文献   

11.
The inhibition of mycelial growth of Lagenidium giganteum by neem oil was lower than that of Metarhizium anisopliae in PYG and Emerson’s YpSs agar media. However, neem oil did not inhibit the mycelial growth of L. giganteum in sunflower seed extract agar medium, but did it inhibit the mycelial growth of M. anisopliae. The minimum inhibitory concentration of neem oil for L. giganteum was higher than that for M. anisopliae. The minimum fungicidal concentration of neem oil in PYG medium was lower than in YpSs for both fungi. The spores of L. giganteum grown in SFE medium could be used with neem oil for vector control.  相似文献   

12.
Transmission of conidia between mates of the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), was studied using two isolates of the entomopathogenic fungus Metarhizium brunneum Petch (Hypocreales: Clavicipitaceae) (formerly M. anisopliae). After one beetle was inoculated and caged with a mate for 6 h, conidia were rinsed off each beetle using Tween-80 and pentane to count conidia transferred. Treated males transmitted more conidia to females than treated females transferred to males. Untreated partners did not die as quickly as their inoculated mates, but died significantly faster than controls. For beetles inoculated with ARSEF 7711, the difference in time to death between inoculated beetles and their untreated mates was shorter when males were inoculated than when females were inoculated. We hypothesize that greater conidial transmission from males to females was due to their relative positions during copulation and the prolonged post-copulatory mate-guarding characteristic of males.  相似文献   

13.
In the first part of this study, four isolates of the fungus Beauveria bassiana (Bals.) Vuillemin (LPP1, LPP2, CG05 and CG24) and one isolate of Metarhizium anisopliae (Metsch.) Sorokin (CG46) were tested against adult foragers of Atta sexdens rubropilosa. Ants were allowed to walk on filter paper discs, inside Petri dishes, previously impregnated with 1 ml of a conidia suspension (2 × 107 conidia ml−1), maintained at 80% RH and 26°C for 24 h and subsequently, transferred to sterile Petri dishes, maintained at 23°C, 80% RH, 24 h dark. The mean values of LT50 for LPP2, LPP1, CG46, CG24 and CG05 were 3.5, 3.7, 3.8, 4.2 and 4.4 days, respectively. Control insects for all tests in this study showed less than 10% mortality. Experiments were carried out to test the toxicity of imidacloprid (IMI) to A. sexdens rubropilosa. Mortality was evaluated 10 days following a 24 h exposure to the insecticide. Percent mortality caused by 500, 200, 100 and 10 ppm IMI was 77.8, 56.7, 45.5 and 5.5 respectively. Insects treated with 10 ppm IMI were observed to have reduced locomotor activity 24 h after exposure to the insecticide. The LC50 of IMI was 154.3 ppm. Subsequent tests were carried out to evaluate the combination of a sub-lethal dose of IMI (10 ppm) and infection by CG24 (1 × 107 conidia ml−1). Mortality due to fungal infection alone was 43.3%. Mortality of insects treated with IMI followed by exposure to the fungus was 64.3%. These results indicate that IMI significantly increases the susceptibility of ants to infection by B. bassiana CG24.  相似文献   

14.
The pupae of Spodoptera litura (Fab.), (Lepidoptera: Noctuidae), a polyphagous pest affecting common crops in Indian subcontinent, were treated with different concentrations of conidia of four isolates of entomopathogenic fungi belonging to three species, Metarhizium anisopliae var. anisopliae (Metschnikov) Sorokin (ARSEF 7487), Lecanicillium muscarium (Petch) Zare & W Gams (two isolates ARSEF 7037 and ARSEF 6118) and Cordyceps cardinalis Sung & Spatafora (ARSEF 7193) under laboratory conditions. Suspensions (108/ml) of conidia harvested from Sabouraud dextrose agar yeast extract (SDAY) plates resulted in the highest mortality (85.8%) with M. anisopliae and the lowest mortality (57.3%) with C. cardinalis. The values of LC50 and LC90 suggested that M. anisopliae was the most virulent fungal strain followed by L. muscarium (ARSEF 7037). However, C. cardinalis was the least virulent species among the fungi used in the bioassay. In soil bioassays, drenching the soil with conidial suspensions of ARSEF 7487 and ARSEF 7037 (10conidia/g of soil) reduced the adult emergence from pupa by 81.3% and 72.5%, respectively, while premixing the sterile soil with conidia killed lesser number of pupae (62.9% by ARSEF 7487 and 54.6% by ARSEF 7037). Our findings suggest that M. anisopliae (ARSEF 7487) and L. muscarium (ARSEF 7037) are potent entomopathogens and could be developed into biocontrol agents against rice cutworm in IPM programs. Handling editor: Helen Roy  相似文献   

15.
The effect of formulation, fungal concentration, type and seasonal changes on the mortality of the tick Amblyomma variegatum was investigated. A previous study demonstrated high pathogenicity of strains of the fungi Beauveria bassiana and Metarhizium anisopliae against the ticks Rhipicephalus appendiculatus and Amblyomma variegatum (Kaaya et al. J Invertebr Pathol 1996; 67: 15–20). The present study was undertaken to explore possible additive or synergistic effects of the two fungi on A. variegatum. The effects of oil and water formulations at different concentrations of each fungus and combination of the two on the mortality of A. variegatum in the laboratory and in the field during the wet and dry seasons were determined and compared. The oil formulation performed better in all assays, with highest tick mortality of 92% occurring during the wet season at conidia concentration of 1 × 1010 conidia/ml of the mixed fungi compared to 49% for the water formulation at similar conidia concentration. However, at the same conidial concentration during the dry season, mortalities in the field were relatively low with the mixture of the fungi recording 24% and 17% tick mortality for the oil and water formulation respectively. The effect of infecting the ticks with a cocktail of the two fungi was inconclusive under more controlled conditions in the laboratory but field results under both wet and dry seasons indicated significant differences between the separate and mixed fungi infections. The results demonstrate a potential of cocktail formulations in the control of ticks and possibly of other arthropod pests.  相似文献   

16.
Protoplasts isolated from wild cotton Gossypium davidsonii were cultured in KM8P medium supplemented with different phytohormones. The most effective combination was 0.45 μM 2,4-dichlorophenoxyacetic acid, 2.68 μM α-naphthaleneacetic acid and 0.93 μM kinetin and the division percentage at the 8th day was 30.78 ± 3.04 %. The density of protoplasts at 2–10 × 105 cm−3 was suitable for protoplast division and calli formation, with a division percentage of 32.21 ± 3.64 % and a plating efficiency of 9.12 ± 2.61 % at the 40th day. The optimal osmotic potential was achieved using 0.5 M glucose or 0.1 M glucose plus 0.5 M mannitol. Protoplasts were cultured in three ways, a double-layer culture system, with liquid over solid medium was proved to be the best way. Embryo induction was further increased by addition of 0.14 μM gibberellic acid.  相似文献   

17.
Twenty-three isolates of Metarhizium anisopliae (Metschnikoff) Sokorin and three isolates of Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales: Clavicipitaceae) were assessed for their virulence against the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Based on the screening results, nine isolates of M. anisopliae and two isolates of B. bassiana were tested for their virulence against young adult (1- to 2-day-old) female T. urticae at constant temperatures of 20, 25, 30 and 35°C. At all temperatures tested, all the fungal isolates were pathogenic to T. urticae but mortality varied with isolates and temperatures. Fungal isolates were more virulent at 25, 30 and 35°C than at 20°C. The lethal time to 50% mortality (LT50) and lethal time to 90% mortality (LT90) values decreased with increased temperature. There were no significant differences in virulence between fungal isolates at 30 and 35°C; however, significant differences were observed at 20 and 25°C.  相似文献   

18.
Jeong Jun Kim 《BioControl》2007,52(6):789-799
The activity of entomopathogens on insect pests has been investigated for many species but the influence of entomopathogenic fungi on factors other than mortality relating to population increase has not been frequently studied. The influence of Lecanicillium attenuatum CS625 (=Verticillium lecanii CS625) on development and reproduction of cotton aphid (Aphis gossypii) was investigated. A conidia suspension of the isolate was applied onto first instar nymphs. Increased spore concentration did not significantly affect each nymphal stage, total nymphal period, pre-reproductive period and the age of first larviposition. A significant dose effect on reduction of life span, reproductive period and fecundity was observed in 1st and 3rd instars after spore application. When conidia were applied to 1st instars, life span was significantly reduced to 10.8 and 8.4 days at 1 × 104 and 1 × 108 conidia/ml, respectively from 12.2 days in the control. During the life span, total fecundity was 41 ± 7.3, 26 ± 0.8 and 22 ± 5.7 nymphs per female at 1 × 104, 1 × 106 and 1 × 108 conidia/ml, respectively compared with 51 ± 2.0 nymphs per untreated female. Reproduction period was also significantly shortened with increasing spore concentration. Application of spores to 3rd instars showed a similar trend. However, daily fecundity of individual aphids was not affected by spore dose. It was concluded that the isolate of L. attenuatum is able to affect populations of cotton aphid by reducing life span and total fecundity as well as by killing the aphids directly.  相似文献   

19.
A somatic embryogenesis protocol for plant regeneration of northern red oak (Quercus rubra) was established from immature cotyledon explants. Embryogenic callus cultures were induced on Murashige and Skoog medium (MS) containing 3% sucrose, 0.24% Phytagel™, and various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-d) after 4 weeks of culture in darkness. A higher response (66%) of embryogenic callus was induced on 0.45 μM 2,4-d. Higher numbers of globular- (31), heart- (17), torpedo- (12), and cotyledon-stage (8) embryos per explant were obtained by culturing embryogenic callus on MS with 3% sucrose, 0.24% Phytagel™, and devoid of growth regulators after 8 weeks culture in darkness. Continuous sub-culturing of embryogenic callus on medium containing 2,4-d yielded only compact callus. Desiccation of embryos for 3 days in darkness at 25 ± 2°C followed by cold storage at 4°C in darkness for 8 weeks favored embryo germination and development of plantlets. Cotyledon-stage embryos subjected to desiccation and chilling treatment cultured on MS with 3% sucrose, 0.24 Phytagel™, 0.44 μM 6-benzylaminopurine (BA), and 0.29 μM gibberellic acid germinated at a higher frequency (61%) than with 0.44 μM BA alone and control cultures. Germinated plantlets developed a shoot and root, were acclimatized successfully, and maintained in a growth room for plantlet development.  相似文献   

20.
A synchronous coinfection of the Colorado potato beetle Leptinotarsa decemlineata (Say) with the entomopathogenic bacteria Bacillus thuringiensis ssp. morrisoni Bonnifoi & de Barjak var. tenebrionis Krieg et al. and hyphomycete Metarhizium anisopliae (Metsch.) Sorokin or Beauveria bassiana (Bals.) Vuill leads to the rapid death of 95–100% of larvae. The bacteria arrest the nutrition of insects, while the fungal spores kill the weakened larvae. The synergistic effect of two pathogens is recorded at a relatively low hyphomycete titer (1–5 × 106 conidia/ml) and is evident in the mortality dynamics at all larval ages. These bacterial and fungal pathogens display no antagonism on artificial nutrient media. This microbial complex is highly efficient under natural conditions (80–90% larval mortality rate and no plant defoliation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号