首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we investigated the intrageneric and intergeneric phylogenetic relationships of the heterotrophic marine dinoflagellate genus Protoperidinium. Using single‐cell polymerase chain reaction methods, we determined small subunit ribosomal RNA gene sequences for 10 Protoperidinium species belonging to four sections and two subgenera. Phylogenetic trees were constructed using maximum parsimony, neighbor joining and maximum likelihood methods. We found intraspecific variability of small subunit rDNA sequences in Protoperidinium conicum (Gran) Balech, Protoperidinium crassipes (Kofoid) Balech and Protoperidinium denticulatum (Gran et Braarud) Balech, but not in other species. The small subunit rDNA phylogeny revealed that the genus is monophyletic, but its phylogenetic position within the Dinophyceae could not be determined because of ambiguous basal topologies. Within the genus Protoperidinium, species of the subgenus Archaeperidinium with two anterior intercalary plates (2a) were shown to be monophyletic, but species of the subgenus Protoperidinium with three anterior intercalary plates (3a) were resolved as paraphyletic. The sections Avellana, Divergentia and Protoperidinium were shown to be monophyletic, while the section Conica was paraphyletic. Based on the trees obtained in the present study, most of the traditionally defined sections are supported by molecular phylogeny. It was also indicated that the section Avellana evolved from one of the Conica‐type dinoflagellates.  相似文献   

2.
The phylogenetic relationships among peritrichs remain unresolved. In this study, the complete small subunit rRNA (SSrRNA) gene sequences of seven species (Epistylis galea, Campanella umbellaria, Carchesium polypinum, Zoothamnium arbuscula, Vaginicola crystallina, Ophrydium versatile, and Opercularia microdiscum) were determined. Trees were constructed using distance-matrix, maximum-likelihood and maximum-parsimony methods, all of which strongly supported the monophyly of the subclass Peritrichia. Within the peritrichs, 1) E. galea grouped with Opercularia microdiscum and Campanella umbellaria but not the other Epistylis species, which indicates that the genus Epistylis might not be monophyletic; 2) the topological position of Carchesium and Campanella suggested that Carchesium should be placed in the family Zoothamniidae, or be elevated to a higher taxonomic rank, and that Campanella should be independent of the family Epistylididae, and probably be given a new rank; and 3) Opisthonecta grouped strongly with Astylozoon, which suggested that Opisthonecta species were not the ancestors of the stalked peritrichs.  相似文献   

3.
4.
Rubia L. is the type genus of the coffee family Rubiaceae and the third largest genus in the tribe Rubieae, comprising ca. 80 species restricted to the Old World. China is an important diversity center for Rubia, where approximately half of its species occur. However, its internal phylogenetic relationships are still poorly understood. The objective of the present study is to contribute to the phylogenetic relationships within Rubia, using the nuclear internal transcribed spacer and six plastid markers and focusing on species from China. Twenty-seven species of Rubia were sampled to infer their phylogeny using Maximum parsimony, Maximum likelihood, and Bayesian analyses. The monophyly of Rubia is supported, provided that R. rezniczenkoana Litv. is excluded from Rubia and transferred to Galium as a new combination: G. rezniczenkoanum (Litv.) L. E Yang & Z. L. Nie. Within Rubia, two clades are clearly supported. They correspond to the traditional sect. Rubias.l. (A) and sect. Oligoneura Pojark. (B), and are morphologically mainly separable by their pinnate (A) versus palmate (B) leaf venation. Plesiomorphic features are the pinnate leaf veining in sect. Rubia s.l. and the occurrence of some species with opposite leaves and true stipules in sect. Oligoneura. In sect. Oligoneura one can assume an evolution from species with opposite leaves and true stipules (as in the R. siamensis Craib group) to those with whorls of two leaves and two leaf-like stipules (as in ser. Chinenses and the R. mandersii Collett & Hemsl. group) and finally with whorls of 6 or even more elements (as in ser. Cordifoliae). The correlation between clades recognized by DNA analyses and available differential morphological features is partly only loose, particularly in the group of R. cordifolia with 2×, 4×, and 6× cytotypes. This may be due to rapid evolutionary divergence and/or hybridization and allopolyploidy.  相似文献   

5.
A comprehensive molecular analysis of the phylogenetic relationships within the Heterotrichea including all described families is still lacking. For this reason, the complete nuclear small subunit (SSU) rDNA was sequenced from further representatives of the Blepharismidae and the Stentoridae. In addition, the SSU rDNA of a new, undescribed species of the genus Condylostomides (Condylostomatidae) was sequenced. The detailed phylogenetic analyses revealed a consistent branching pattern: while the terminal branches are generally well resolved, the basal relationships remain unsolved. Moreover, the data allow some conclusions about the macronuclear evolution within the genera Blepharisma, Stentor, and Spirostomum suggesting that a single, compact macronucleus represents the ancestral state.  相似文献   

6.
Peniculine ciliates have been recognized as a distinct higher taxon of ciliates for almost 50 years. However, phylogenetic relationships within the Subclass Peniculia are still unsettled. To contribute to our understanding of their phylogeny and provide evidence for the position of Urocentrum turbo, we sequenced its small subunit (SS) rRNA gene and the SSrRNA genes from Lembadion bullinum, Frontonia sp., Paramecium caudatum, Paramecium multimicronucleatum, Paramecium putrinum, and Paramecium woodruffi. Urocentrum turbo was the only one of these species not to exhibit a shortened Helix E10_1, which we conclude characterizes the "higher" peniculines. Except for U. turbo, the peniculines are strongly supported as a monophyletic clade with Lembadion, Frontonia, and Paramecium species forming separate and strongly supported clades by bootstrap analysis using distance matrix, maximum parsimony, and maximum likelihood methods. Urocentrum turbo is associated with different lineages, depending upon the analysis used. The Paramecium species form at least four clades with the Paramecium aurelia subgroup being the most derived. We conclude that the Subclass Peniculia should be divided into two orders, the Order Urocentrida and Order Peniculida, with the latter order having two suborders, the Suborder Frontoniina and Peniculina. We place U. turbo with the peniculines because of shared morphological and stomatogenetic features.  相似文献   

7.
The phylogenetic position of the trichomonad, Histomonas meleagridis was determined by analysis of small subunit rRNAs. Molecular trees including all identified parabasalid sequences available in data bases were inferred by distance, parsimony, and likelihood methods. All reveal a close relationship between H. meleagridis, and Dientamoeba fragilis. Moreover, small subunit rRNAs of both amoeboid species have a reduced G + C content and increased chain length relative to other parabasalids. Finally, the rRNA genes from H. meleagridis and D. fragilis share a recent common ancestor with Tritrichomonasfoetus, which exhibits a more developed cytoskeleton. This indicates that Histomonas and Dientamoeba secondarily lost most of the typical trichomonad cytoskeletal structures and hence, do not represent primitive morphologies. A global phylogeny of parabasalids revealed significant discrepancies with morphology-based classifications, such as the polyphyly of most of the parabasalid families and classes included in our study.  相似文献   

8.
A phylogeny of gekkotan lizards was derived from C- mos nuclear DNA sequence data. Forty-one currently recognized genera, representing all major gekkotan lineages, were included in the study. A total of 378 bp of partial C- mos gene sequences was obtained and aligned. Maximum parsimony (MP) and maximum likelihood (ML) trees were generated based on unweighted analysis using P AUP *; similar tree topologies were recovered by both methods. The Eublepharidae were monophyletic and its relationship to other major clades was poorly resolved. The Pygopodidae of Kluge (1987) was monophyletic, but relationships within this group differed from those retrieved by previous analyses. The Diplodactylini + padded carphodactylines were the sister group of pygopods + padless carphodactylines. The Gekkonidae were monophyletic, but we found no evidence in support of the Teratoscincinae, as Teratoscincus was embedded well within the gekkonids. Both MP and ML analyses supported the basal position of Sphaerodactylus within the gekkonids, in contrast to morphologically based hypotheses. We propose a new higher order classification of the Gekkota that reflect these results. Five gekkotan families: Eublepharidae, Gekkonidae, Pygopodidae, Diplodactylidae, and Carphodactylidae are recognized. The higher order status of the sphaerodactyls will require more intensive sampling of this group. Our results support the hypothesis that the early cladogenesis of the Gekkota was associated with the split of Eastern Gondwanaland from Western Gondwanaland. Divergences among living genera in the Eublepharidae and the Eastern Gondwanan lineages (Diplodactylidae, Pygopodidae and Carphodactylidae) may be older than those in the Gekkonidae.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 353–368.  相似文献   

9.
The origin of the anomalodesmatan bivalves and the relationships of the constituent families are far from being settled. Phylogenetic uncertainties result from the morphological heterogeneity of the Anomalodesmata and from parallel/convergent evolution of several character complexes due to similar life habits. Here, we assess these problems with 26 near-complete anomalodesmatan 18S rRNA sequences from 12 out of 15 families and a selection of heteroconch outgroup taxa. The robustly monophyletic Anomalodesmata share insertions in the V2 and V4 expansion regions. Both parsimony and maximum-likelihood analyses confirm their position among the basal heterodonts rooting between Carditidae and Lucinidae or, together with the latter, between Carditidae and the remaining Heterodonta. There is no support for monophyletic Myoida, nor for a close relationship of Anomalodesmata with any myoid taxon. At the base of the Anomalodesmata is an unstable cluster of long-branch species belonging to the Poromyidae, Verticordiidae, Lyonsiellidae and Thraciidae. The remaining Anomalodesmata split consistently but with varying branch support into three major clades: the Cuspidariidae excluding Myonera ; a 'thraciid' clade consisting of (Euciroidae, ( Myonera ( Thracia, Cleidothaerus , Myochamidae))); and a 'lyonsiid' clade with Laternulidae, Pandoridae, diphyletic Lyonsiidae due to a robust clade of Lyonsia norwegica and the clavagellid Brechites vaginiferus . Tests of various alternative topologies showed that all are significantly longer but optimal likelihood trees with monophyletic carnivorous taxa and/or Thraciidae are not significantly less likely. These results differ greatly from previous morphological studies. Palaeontological data and homology decisions for selected characters are evaluated in the light of the molecular trees.  © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society , 2003, 139 , 229–246.  相似文献   

10.
Sequences of chloroplast gene rbcL and partial nuclear 26S rDNA were used to evaluate phylogenetic relationships of Asteropyrum. Four primary clades were recognized in Ranunculaceae, corresponding to subfamilies Hydrastidoideae, Coptidoideae, Thalictroideae, and Ranunculoideae. Our results place Asteropyrum in Ranunculoideae, sister to the tribe Actaeeae, which includes Beesia, Cimicifuga, and Eranthis. This is supported by chromosome characters, including chromosome size and basic number, and the stainability of prophase chromosomes and interphase nuclei. Our results do not support previous placements of Asteropyrum in either Coptidoideae or Thalictroideae. Considering its uniqueness in a few characters (e.g. simple peltate leaves, accumulating benzylisoquinoline alkaloids, vessel elements with only typical scalariform perforation plates), we recognize Asteropyrum as a monotypic tribe of Ranunculoideae, Asteropyreae W. T. Wang et C. Y. Chang.  相似文献   

11.
The small subunit rDNAs of five species belonging to the Euplotidae and eight species of the Oxytrichidae were sequenced to obtain a more detailed picture of the phylogenetic relationships within the Spirotrichea (Ciliophora). Various tree reconstruction algorhythms yielded nearly identical topologies. All Euplotidae were separated from the other Spirotrichea by a deep split. Further, a large genetic distance between the marine genus Moneuplotes and the freshwater species of Euplotoides was found. Differences between the methods used occurred only within the Oxytrichidae. Whereas the monophyly of the Stylonychinae was supported in all trees, the monophyly of the Oxytrichinae was not. However, the molecular data support the morphological and ontogenetic evidence that the pattern of 18 frontal-ventral-transversal cirri evolved in the stemline of the Oxytrichidae and was modified several times independently. Our results are also in agreement with taxonomic revisions: the separation of both Sterkiella nova from Oxytricha and Tetmemena pustulata from Stylonychia.  相似文献   

12.
13.
The genus Paramecium includes species that are well known and very common in freshwater environments. Species of Paramecium are morphologically divided into two distinct groups: the "bursaria" subgroup (foot-shaped) and the "aurelia" subgroup (cigar-shaped). Their placement within the class Oligohymenophorea has been supported by the analysis of the small subunit rRNA gene sequence of P. tetraurelia. To confirm the stability of this placement and to resolve relationships within the genus, small subunit rRNA gene sequences of P. bursaria, P. calkinsi, P. duboscqui, P. jenningsi, P. nephridiatum, P. primaurelia, and P. polycaryum were determined and aligned. Trees constructed using distance-matrix, maximum-likelihood, and maximum-parsimony methods all depicted the genus as a monophyletic group, clustering with the other oligohymenophorean taxa. Within the Paramecium clade, P. bursaria branches basal to the other species, although the remaining species of the morphologically defined "bursaria" subgroup do not group with P. bursaria, nor do they form a monophyletic subgroup. However, the species of the "aurelia" subgroup are closely related and strongly supported as a monophyletic group.  相似文献   

14.
Cyprinidae, the largest fish family, comprises ap-proximately 210 recognized genera and 2010 species that are distributed widely in Eurasia, East Indian Is-land, Africa, and North America[1]. Species richness of this family is the greatest in East Asia, for example, China has 122 genera and more than 600 species. It is difficult to build a comprehensive phylogeny of Cy-prinidae due to the large number of genera and species. The classification of this family has been subject to revisions an…  相似文献   

15.
We determined small subunit ribosomal DNA sequences from three parabasalid species, Trichomitus batrachorum strain R105, Tetratrichomonas gallinarum, and Pentatrichomonas hominis belonging to the Trichomonadinae subfamily. Unrooted molecular phylogenetic trees inferred by distance, parsimony, and likelihood methods reveal four discrete clades among the parabasalids. The Trichomonadinae form a robust monophyletic group. Within this subfamily T. gallinarum is closely related to Trichomonas species as supported by morphological data, with P. hominis and Pseudotrypanosoma giganteum occupying basal positions. Our analysis does not place T. batrachorum within the Trichomonadinae. Trichomitus batrachorum (strains R105 and BUB) and Hypotrichomonas acosta form a well-separated cluster, suggesting the genus Trichomitus is polyphyletic. The emergence of T. batrachorum precedes the Trichomonadinae-Tritrichomonadinae dichotomy, emphasizing its pivotal evolutionary position among the Trichomonadidae. A third cluster unites the Devescovinidae and the Calonymphidae. The fourth clade contains the three hypermastigid sequences from the genus Trichonympha, which exhibit the earliest emergence among the parabasalids. The addition of these three new parabasalid species did not however resolve ambiguities regarding the relative branching order of the parabasalid clades. The phylogenetic positions of Tritrichomonas faetus, Monocercomonas sp., Dientamoeba fragilis, and the unidentified Reticulitermes flavipes gut symbiont 1 remain unclear.  相似文献   

16.
The small subunit rRNA (SSrRNA) genes of six marine oligohymenophoreans, namely Uronemella filificum , Schizocalyptra sp.-WYG07060701, Schizocalyptra aeschtae , Pleuronema sinica , P. czapikae and Paratetrahymena sp., were sequenced. Phylogenetic trees were constructed with four different methods to assess the inter- and intrageneric relationships among the scuticociliates and the phylogenetic assignment of the order Loxocephalida. The SSrRNA phylogeny indicates that: (i) Paratetrahymena is most closely related to Cardiostomatella ; (ii) the order Loxocephalida and the family Uronematidae both appear to be polyphyletic; (iii) the order Philasterida is a well-defined taxon; (iv) Cyclidium porcatum falls outside the order Pleuronematida in all analyses; (v) the validity of the genus Uronemella is confirmed; (vi) Schizocalyptra is a member of the family Pleuronematidae. Furthermore, the predicted secondary structures of the variable region 4 of the SSrRNA gene sequences show that the size of the terminal bulge in Helix E23–7 is probably different for the orders Philasterida and Pleuronematida. Also, compared to Uronema and Homalogastra , Uronemella has distinct patterns in Helices E23–1, E23–7, E23–8 and E23–9.  相似文献   

17.
运用核糖体DNA内转录间隔区ITS序列对狭蕊龙胆属Metagentiana10种及其近缘属22种植物进行了系统发育分析。ITS分析结果表明狭蕊龙胆属是一个多系群:在系统发育树上,双蝴蝶属Tripterospermum和蔓龙胆属Crawfurdia的种类位于狭蕊龙胆属各分支中,而且双蝴蝶属和蔓龙胆属的种类也相互交叉;这一结果不支持将3个属各自独立为属。但是,在所有分析中,3个属共同形成一单系分支,是龙胆属Gentiana的姊妹群;这一结果与形态学、花部解剖学、细胞学、孢粉学和胚胎学等证据基本一致,狭蕊龙胆属应该从龙胆属中分离出来,它与双蝴蝶属和蔓龙胆属有更为密切的亲缘关系。根据分支图,在狭蕊龙胆属、双蝴蝶属和蔓龙胆属组成的复合群中,现已知的染色体基数x=17、21和23可能存在网状和平行进化。  相似文献   

18.
The phylogeny of a symbiotic hypermastigote Trichonympha agilis (class Parabasalia; order Hypermastigida) in the hindgut of the lower termite Reticulitermes speratus was examined by a strategy that does not rely on cultivation. From mixed-population DNA obtained from the termite gut, small subunit (16S-like) ribosomal RNA sequences were directly amplified by the polymerase chain reaction method using primers specific for eukaryotes. Comparative sequence analysis of the clones revealed two kinds of sequences, one from the termite itself and the other from a symbiotic protist. A fluorescent-labeled oligonucleotide probe for the latter sequence was designed and used in whole-cell hybridization experiments to provide direct visual evidence that the sequence originated from a large hypermastigote in the termite hindgut, Trichonympha agilis. According to the phylogenetic trees constructed, the hypermastigote represented one of the deepest branches of eukaryotes. The hypermastigote along with members of the order Trichomonadida formed a monophyletic lineage, indicating that this hypermastigote and trichomonads shared a recent common ancestry.  相似文献   

19.
ABSTRACT. The morphologically unique genus Gastrocirrhus has been considered a distinct but systematically uncertain euplotid due to the absence of both morphogenetic and molecular information. Based on the small subunit rRNA gene sequence, the phylogenetic position of Gastrocirrhus monilifer Ozaki & Yagui, 1942 was re-addressed using multiple algorithms (neighbor-joining, maximum parsimony, least-squares, and Bayesian inference methods). Results indicate that: (1) all phylogenetic trees using different methods are nearly identical in topology, placing G. monilifer closest to Euplotidium arenarium ; (2) Gastrocirrhus and Euplotidium form a monophyletic group, namely the family Gastrocirrhidae, and appear to be intermediate taxa bridging the evolution of the Diophrys-Uronychia and Euplotes- complexes (i.e. Euplotes, Certesia , and Aspidisca ); (3) the order Euplotida is a paraphyletic group composed of three deeply diverged clades ( Euplotes–Certesia–Aspidisca – Gastrocirrhus–Euplotidium ; Uronychia – Diophrys ; and Prodiscocephalus ); (4) together with Prodiscocephalus , the Diophrys-Uronychia complex forms a group at the suborder level and is placed at the root of the order Euplotida, and (5) results from molecular analyses conspicuously challenge the conclusions deduced from morphological as well as morphogenetical investigations—the characteristics traditionally used to define the euplotid taxa at the generic level and/or above may not be uniformly reliable.  相似文献   

20.
Phylogenetic relationships of Erysiphales within Ascomycota were inferred from the newly determined sequences of the 18S rDNA and partial sequences of the 28S rDNA including the D1 and D2 regions of 10 Erysiphales taxa. Phylogenetic analyses revealed that the Erysiphales form a distinct clade among ascomycetous fungi suggesting that the Erysiphales diverged from a single ancestral taxon. The Myxotrichaceae of the Onygenales was distantly related to the other onygenalean families and was the sister group to the Erysiphales calde, with which it combined to form a clade. The Erysiphales/Myxotrichaceae clade was also closely related to some discomycetous fungi (Leotiales, Cyttariales and Thelebolaceae) including taxa that form cleistothecial ascomata. The present molecular analyses as well as previously reported morphological observations suggest the possible existence of a novel evolutionary pathway from cleistothecial discomycetous fungi to Erysiphales and Myxotrichaceae. However, since most of these fungi, except for the Erysiphales, are saprophytic on dung and/or plant materials, the questions of how and why an obligate biotroph like the Erysiphales radiated from the saprophytic fungi remain to be addressed. We also estimated the radiation time of the Erysiphales using the 18S rDNA sequences and the two molecular clockes that have been previously reported. The calculation showed that the Erysiphales split from the Myxotrichaceae 190–127 myr ago. Since the radiation time of the Erysiphales does not exceed 230 myr ago, even when allowance is made for the uncertainty of the molecular clocks, it is possible to consider that the Erysiphales evolved after the radiation of angiosperms. The results of our calculation also showed that the first radiation within the Erysiphales (138–92 myr ago) coincided with the date of a major diversification of angiosperms (130–90 myr ago). These results may support our early assumption that the radiation of the Erysiphales coincided with the evolution of angiosperm plants. Contribution No. 152 from the Laboratory of Plant Pathology, Mie University  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号