首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The assimilatory nitrite reductase of the N(2)-fixing bacterium Azotobacter chroococcum was prepared in a soluble form from cells grown aerobically with nitrate as the nitrogen source, and some of its properties have been studied. 2. The enzyme is a FAD-dependent metalloprotein (mol.wt. about 67000), which stoicheiometrically catalyses the direct reduction of nitrite to NH(3) with NADH as the electron donor. 3. NADH-nitrite reductase can exist in two either active or inactive interconvertible forms. Inactivation in vitro can be achieved by preincubation with NADH. Nitrite can specifically protect the enzyme against this inactivation and reverse the process once it has occurred. 4. A. chroococcum nitrite reductase is an adaptive enzyme whose formation depends on the presence of either nitrate or nitrite in the nutrient solution. 5. Tungstate inhibits growth of the microorganism very efficiently, by competition with molybdate, when nitrate is the nitrogen source, but does not interfere when nitrite or NH(3) is substituted for nitrate. The addition of tungstate to the culture media results in the loss of nitrate reductase activity but does not affect nitrite reductase.  相似文献   

2.
In shaking culture, nitrate reductase activity in the cell-free extracts of Bacillus licheniformis increased with the addition of NH4Cl to the medium containing NaNO3 as a single nitrogen source, where amounts of nitrogen sources were sufficient for cell growth. This increase of nitrate reductase activity therefore suggests that the activity is not for nitrate assimilation but for other physiological functions containing a dissimilatory nitrate reduction.  相似文献   

3.
Summary Eleven green individuals were isolated when 95000 M2 plants of barley (Hordeum vulgare L.), mutagenised with azide in the M1, were screened for nitrite accumulation in their leaves after nitrate treatment in the light. The selected plants were maintained in aerated liquid culture solution containing glutamine as sole nitrogen source. Not all plants survived to flowering and some others that did were not fertile. One of the selected plants, STA3999, from the cultivar Tweed could be crossed to the wild-type cultivar and analysis of the F2 progeny showed that leaf nitrite accumulation was due to a recessive mutation in a single nuclear gene, which has been designated Nir1. The homozygous nir1 mutant could be maintained to flowering in liquid culture with either glutamine or ammonium as sole nitrogen source, but died within 14 days after transfer to compost. The nitrite reductase cross-reacting material seen in nitrate-treated wild-type plants could not be detected in either the leaf or the root of the homozygous nir1 mutant. Nitrite reductase activity, measured with dithionite-reduced methyl viologen as electron donor, of the nitrate-treated homozygous nir1 mutant was much reduced but NADH-nitrate reductase activity was elevated compared to wild-type plants. We conclude that the Nir1 locus determines the formation of nitrite reductase apoprotein in both the leaf and root of barley and speculate that it represents either the nitrite reductase apoprotein gene locus or, less likely, a regulatory locus whose product is required for the synthesis of nitrite reductase, but not nitrate reductase. Elevation of NADH-nitrate reductase activity in the nir1 mutant suggests a regulatory perturbation in the expression of the Narl gene.  相似文献   

4.
The growth of suspension cultured cells of Nicotiana tabacum (tobacco) was inhibited completely by 100 M tungstate. Even though molybdate reversed the tungstate inactivation of nitrate reductase activity, the growth inhibition was not reversed. The growth inhibition of N. tabacum, Daucus carota, Glycine max and Solanum tuberosum suspension cultured cells by tungstate was similar in media with or without amino acids as a source of reduced nitrogen. Only in the case of G. max was a slight reversal caused by the amino acids. Tungstate was slightly less inhibitory to the growth of a nitrate reductase-lacking mutant N. tabacum line (nia-63) than to the line with nitrate reductase. These results indicate that tungstate must inhibit the cell growth of the four species used, predominantly, in some way other than by inhibiting nitrate reductase activity. Similar studies with molybdate, a sulfate analog which apparently competes with sulfate at the ATP sulfury-lase enzyme, showed that 1 mM concentrations were completely inhibitory to cell growth. The addition of sulfate or cysteine, as a source of reduced sulfur, and amino acids, as a source of reduced nitrogen, in most cases did not reverse the molybdate inhibition appreciably. Some reversal was seen only by sulfate with D. carota cells and by cysteine plus amino acids with D. carota and G. max. These results indicate that selection for tungstate or molybdate resistance will in general not select for higher levels or other alterations in the activity of nitrate reductase or ATP sulfurylase, respectively, since these ions do not inhibit growth by primarily affecting these enzymatic steps in cultured cells of the four species studied.  相似文献   

5.
Nitrate and nitrite was reduced by Escherichia coli E4 in a l-lactate (5 mM) limited culture in a chemostat operated at dissolved oxygen concentrations corresponding to 90–100% air saturation. Nitrate reductase and nitrite reductase activity was regulated by the growth rate, and oxygen and nitrate concentrations. At a low growth rate (0.11 h–1) nitrate and nitrite reductase activities of 200 nmol · mg–1 protein · min–1 and 250 nmol · mg–1 protein · min–1 were measured, respectively. At a high growth rate (0.55 h–1) both enzyme activities were considerably lower (25 and 12 nmol mg–1 · protein · min–1). The steady state nitrite concentration in the chemostat was controlled by the combined action of the nitrate and nitrite reductase. Both nitrate and nitrite reductase activity were inversely proportional to the growth rate. The nitrite reductase activity decreased faster with growth rate than the nitrate reductase. The chemostat biomass concentration of E. coli E4, with ammonium either solely or combined with nitrate as a source of nitrogen, remained constant throughout all growth rates and was not affected by nitrite concentrations. Contrary to batch, E. coli E4 was able to grow in continuous cultures on nitrate as the sole source of nitrogen. When cultivated with nitrate as the sole source of nitrogen the chemostat biomass concentration is related to the activity of nitrate and nitrite reductase and hence, inversely proportional to growth rate.  相似文献   

6.
Providencia rettgeri strain YL was found to be efficient in heterotrophic nitrogen removal under aerobic conditions. Maximum removal of NH4 +–N occurred under the conditions of pH 7 and supplemented with glucose as the carbon source. Inorganic ions such as Mg2+, Mn2+, and Zn2+ largely influenced the growth and nitrogen removal efficiency. A quantitative detection of nitrogen gas by gas chromatography was conducted to evaluate the nitrogen removal by strain YL. From the nitrogen balance during heterotrophic growth with 180 mg/l of NH4 +–N, 44.5% of NH4 +–N was in the form of N2 and 49.7% was found in biomass, with only a trace amount of either nitrite or nitrate. The utilization of nitrite and nitrate during the ammonium removal process demonstrated that the nitrogen removal pathway by strain YL was heterotrophic nitrification-aerobic denitrification. A further enzyme assay of nitrate reductase and nitrite reductase activity under the aerobic condition confirmed this nitrogen removal pathway.  相似文献   

7.
Summary It had previously been held that chlorate is not itself toxic, but is rendered toxic as a result of nitrate reductase-catalysed conversion to chlorite. This however cannot be the explanation of chlorate toxicity in Aspergillus nidulans, even though nitrate reductase is known to have chlorate reductase activity. Among other evidence against the classical theory for the mechanism of chlorate toxicity, is the finding that not all mutants lacking nitrate reductase are clorate resistant. Both chlorate-sensitive and resistant mutants lacking nitrate reductase, also lack chlorate reductase. Data is presented which implicates not only nitrate reductase but also the product of the nirA gene, a positive regulator gene for nitrate assimilation, in the mediation of chlorate toxicity. Alternative mechanisms for chlorate toxicity are considered. It is unlikely that chlorate toxicity results from the involvement of nitrate reductase and the nirA gene product in the regulation either of nitrite reductase, or of the pentose phosphate pathway. Although low pH has an effect similar to chlorate, chlorate is not likely to be toxic because it lowers the pH; low pH and chlorate may instead have similar effects. A possible explanation for chlorate toxicity is that it mimics nitrate in mediating, via nitrate reductase and the nirA gene product, a shut-down of nitrogen catabolism. As chlorate cannot act as a nitrogen source, nitrogen starvation ensures.  相似文献   

8.
9.
Various nitrogen sources were shown to alter the growth and modify nitrate reductase activities of stem callus tissue derived from two clones of Convolvulus arvensis L. (field bindweed). Callus from a Washington (S) clone grew better and had a higher level of nitrate reductase activity than callus from a New Mexico (R) clone when nitrate was the only source of nitrogen available in the culture medium. The addition of glycine to the culture medium decreased growth of the R clone and increased growth of the S clone, but glutamic acid repressed growth of both clones. An amide source of nitrogen such as glutamine or asparagine, or ammonium was required to produce maximum growth of both bindweed clones. Glutamine increased nitrate reductase activity in the two clones, and glycine increased nitrate reductase activity in the S clone but decreased it in the R clone. Glutamic acid decreased nitrate reductase activities in both the R and S tissues.  相似文献   

10.
Summary Three plants, R9201 and R11301 (from cv. Maris Mink) and R12202 (from cv. Golden Promise), were selected by screening M2 populations of barley (Hordeum vulgare L.) seedlings (mutagenised with azide in the M1) for resistance to 10 mM potassium chlorate. Selections R9201 and R11301 were crossed with the wild-type cv. Maris Mink and analysis of the F2 progeny showed that one quarter lacked shoot nitrate reductase activity. These F2 plants also withered and died in the continuous presence of nitrate as sole nitrogen source. Loss of nitrate reductase activity and withering and death were due in each case to a recessive mutation in a single nuclear gene. All F1 progeny derived from selfing selection R12202 lacked shoot nitrate reductase activity and also withered and subsequently died when maintained in the continuous presence of nitrate as sole nitrogen source. All homozygous mutant plants lacked not only shoot nitrate reductase activity but also shoot xanthine dehydrogenase activity. The plants took up nitrate, and possessed wild-type or higher levels of shoot nitrite reductase activity and NADH-cytochrome c reductase activity when treated with nitrate for 18 h. We conclude that loss of shoot nitrate reductase activity, xanthine dehydrogenase activity and withering and death, in the three mutants R9201, R11301 and R12202 is due to a mutation affecting the formation of a functional molybdenum cofactor. The mutants possessed wild-type levels of molybdenum and growth in the presence of unphysiologically high levels of molybdate did not restore shoot nitrate reductase or xanthine dehydrogenase activity. The shoot molybdenum cofactor of R9201 and of R12202 is unable to reconstitute NADPH nitrate reductase activity from extracts of the Neurospora crassa nit-1 mutant and dimerise the nitrate reductase subunits present in the respective barley mutant. The shoot molybdenum cofactor of R11301 is able to effect dimerisation of the R11301 nitrate reductase subunits and can reconstitute NADPH-nitrate reductase activity up to 40% of the wild-type molybdenum cofactor levels. The molybdenum cofactor of the roots of R9201 and R11301 is also defective. Genetic analysis demonstrated that R9201, but not R11301, is allelic to R9401 and Az34 (nar-2a), two mutants previously shown to be defective in synthesis of molybdenum cofactor. The mutations in R9401 and R9201 gave partial complementation of the nar-2a gene such that heterozygotes had higher levels of extractable nitrate reductase activity than the homozygous mutants.We conclude that: (a) the nar-2 gene locus encodes a step in molybdopterin biosynthesis; (b) the mutant R11301 represents a further locus involved in the synthesis of a functional molybdenum cofactor; (c) mutant Rl2202 is also defective in molybdopterin biosynthesis; and (d) the nar-2 gene locus and the gene locus defined by R11301 govern molybdenum cofactor biosynthesis in both shoot and root.  相似文献   

11.
A Paracoccus denitrificans strain (M6Ω) unable to use nitrate as a terminal electron acceptor was constructed by insertional inactivation of the periplasmic and membrane-bound nitrate reductases. The mutant strain was able to grow aerobically with nitrate as the sole nitrogen source. It also grew anaerobically with nitrate as sole nitrogen source when nitrous oxide was provided as a respiratory electron acceptor. These growth characteristics are attributed to the presence of a third, assimilatory nitrate reductase. Nitrate reductase activity was detectable in intact cells and soluble fractions using nonphysiological electron donors. The enzyme activity was not detectable when ammonium was included in the growth medium. The results provide an unequivocal demonstration that P. denitrificans can express an assimilatory nitrate reductase in addition to the well-characterised periplasmic and membrane-bound nitrate reductases. Received: 12 August 1996 / Accepted: 29 October 1996  相似文献   

12.
Nitrogen-limited continuous cultures of Cyanidium caldarium contained induced levels of glutamine synthetase and nitrate reductase when either nitrate or ammonia was the sole nitrogen source. Nitrate reductase occurred in a catalytically active form. In the presence of excess ammonia, glutamine synthetase and nitrate reductase were repressed, the latter enzyme completely. In the presence of excess nitrate, intermediate levels of glutamine synthetase activity occurred. Nitrate reductase was derepressed but occurred up to 60% in a catalytically inactive form.Cell suspensions of C. caldarium from nitrate- or ammonialimited cultures assimilated either ammonia or nitrate immediately when provided with these nutrients. In these types of cells, as well as in cells grown with excess nitrate, the rate of ammonia assimilation was 2.5-fold higher than the rate of nitrate assimilation. It is proposed that the reduced rate at which nitrate was assimilated as compared to ammonia might be due to regulatory mechanisms which operate at the level of nitrate reductase activity.  相似文献   

13.
Summary Chlorella vulgaris, grown with ammonium sulphate as nitrogen source, contains very little nitrate reductase activity in contrast to cells grown with potassium nitrate. When ammonium-grown cells are transferred to a nitrate medium, nitrate reductase activity increases rapidly and the increase is partially prevented by chloramphenicol and by p-fluorophenylalanine, suggesting that protein synthesis is involved. The increase in nitrate reductase activity is prevented by small quantities of ammonium; this inhibition is overcome, in part, by raising the concentration of nitrate. Although nitrate stimulates the development of nitrate reductase activity, its presence is not essential for the formation of the enzyme since this is formed when ammonium-grown cells are starved of nitrogen and when cells are grown with urea or glycine as nitrogen source. It is concluded that the formation of the enzyme is stimulated (induced) by nitrate and inhibited (repressed) by ammonium.  相似文献   

14.
Summary Several yeast strains were assayed for occurence of nitrate reductase after growth in a defined medium with nitrate as the sole nitrogen source, Candida boidinii DSM 70026, showing the highest specific activity, was further investigated. The procedures for yeast fermentation and nitrate reductase purfication are described in detail. Nitrate reductase from this yeast was characterized as NAD(P)H: nitrate oxidoreductase (E.C.1.6.6.2). The enzyme activity with NADH (NADPH) was highest at pH 7.0 (7.1) and 30° C (25° C). The values of K m determinations with NADH/NADPH were both 4 × 10–4 mol/l; values for the substrate inhibition constant (K i) were 6 × 10–4 mol/l. The molecular mass of the native enzyme was estimated by gel permeation chromatography to be approximately 350 kDa. Offprint requests to: R. Gromes  相似文献   

15.
The oceanic diatom Thalassiosira pseudonana Hasle and Heimdal (formerly Cyclotella nana) was grown with 12L:12D illumination cycles in nitrogen-limited continuous culture with a mixture of ammonium and nitrate as the N source. Measurements included, at 3 different growth rates (degrees of N limitation), cell concentration, cell carbon, nitrogen, and chlorophyll a contents, cell volume, photosynthetic carbon assimilation vs. irradiance, short-term uptake of ammonium and nitrate vs. their ambient concentrations, and in vitro activities of the assimilatory enzymes nitrate reductase and glutamic dehydrogenase. The various parameters showed either an increase (pattern a) or a decrease (pattern b) with increasing N limitation. Those following pattern a were nitrate reductase activity and the capacity to assimilate nitrate and ammonium. Those following pattern b were glutamic dehydrogenase activity, photosynthetic rate, nitrogen:carbon and chlorophyll a:carbon composition ratios. Results are discussed in terms of the interpretation such measurement for natural phytoplankton and effects of circadian periodicity.  相似文献   

16.
Sulfurospirillum deleyianum grew in batch culture under anoxic conditions with sulfide (up to 5 mM) as electron donor, nitrate as electron acceptor, and acetate as carbon source. Nitrate was reduced to ammonia via nitrite, a quantitatively liberated intermediate. Four moles of sulfide were oxidized to elemental sulfur per mole nitrate converted to ammonia. The molar growth yield per mole sulfide consumed, Ym, was 1.5 ± 0.2 g mol–1 for the reduction of nitrate to ammonia. By this type of metabolism, S. deleyianum connected the biogeochemical cycles of sulfur and nitrogen. The sulfur reductase activity in S. deleyianum was inducible, as the activity depended on the presence of sulfide or elemental sulfur during cultivation with nitrate or fumarate as electron acceptor. Hydrogenase activity was always high, indicating that the enzyme is constitutively expressed. The ammonia-forming nitrite reductase was an inducible enzyme, expressed when cells were cultivated with nitrate, nitrite, or elemental sulfur, but repressed after cultivation with fumarate. Received: 13 March 1995 / Accepted: 29 May 1995  相似文献   

17.
Tritordeum is a fertile amphiploid derived from durum wheat (Triticum turgidum L. conv. durum) × a wild barley (Hordeum chilense Roem. et Schultz.). The organic nitrogen content of tritordeum grain (34 mg g-1 DW) was significantly higher than that of its wheat parent (25 mg g-1 DW). Leaf and root nitrogen content became higher in tritordeum than in wheat after four weeks of growth, independently of the nitrogen source (either NO3 - or NH4 +). Under NO3 - nutrition, tritordeum generally exhibited higher levels of nitrate reductase (NR) activity than wheat. Nitrite reductase (NiR) levels were however lower in tritordeum than in its wheat parent. In NH4 +-grown plants, both NR and NiR activities progressively decreased in the two species, becoming imperceptible after 3 to 5 weeks of growth. Results indicate that, in addition to a higher rate of NO3 - reduction, other physiological factors must be responsible for the greater accumulation of organic nitrogen in tritordeum grain.  相似文献   

18.
Activities of nitrate reductase (NR; EC 1.6.6.1), nitrite reductase (NiR; EC 1.7.7.1), glutamine synthetase (GS; EC 6.3.1.2) and glutamate dehydrogenase (GDH; EC 1.4.1.3) were measured in cotyledons of sunflower (Helianthus annuus L. cv Peredovic) seedlings during germination and early growth under various external nitrogen sources. The presence of NO 3 - in the medium promoted a gradual increase in the levels of NR and NiR activities during the first 7 d of germination. Neither NR nor NiR activities were increased in a nitrogen-free medium or in media with either NH 4 + or urea as nitrogen sources. Moreover, the presence of NH 4 + did not abolish the NO 3 - -dependent appearance of NR and NiR activities. The increase of NR activity was impaired both by cycloheximide and chloramphenicol, which indicates that both cytoplasmic 80S and plastidic 70S ribosomes are involved in the synthesis of the NR molecule. By contrast, the appearance of NiR activity was only inhibited by cycloheximide, indicating that NiR seems to be exclusively synthesized on the cytoplasmic 80S ribosomes. Glutamine-synthetase activity was also strongly increased by external NO 3 - but not by NH 4 + or urea. The appearance of GS activity was more efficiently suppressed by cycloheximide than chloramphenicol. This indicates that GS is mostly synthesized in the cytoplasm. The cotyledons of the dry seed contain high levels of GDH activity which decline during germination independently of the presence or absence of a nitrogen source. Cycloheximide, but not chloramphenicol, greatly prevented the decrease of GDH activity.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - NiR nitrite reductase - NR nitrate reductase  相似文献   

19.
In a batch culture experiment the microaerophilic Campylobacter-like bacterium “Spirillum” 5175 derived its energy for growth from the reduction of nitrate to nitrite and nitrite to ammonia. Hereby, formate served as electron donor, acetate as carbon source, and l-cysteine as sulfur source. Nitrite was quantitatively accumulated in the medium during the reduction of nitrate; reduction of nitrite began only after nitrate was exhausted from the medium. The molar growth yield per mol formate consumed, Ym, was 2.4g/mol for the reduction of nitrate to nitrite and 2.0 g/mol for the conversion of nitrite to ammonia. The gain of ATP per mol of oxidized formate was 20% higher for the reduction of nitrate to nitrite, compared to the reduction of nitrite to ammonia. With succinate as carbon source and nitrite as electron acceptor, Ym was 3.2g/mol formate, i.e. 60% higher than with acetate as carbon source. No significant amount of nitrous oxide or dinitrogen was produced during growth with nitrate or nitrite both in the presence or absence of acetylene. No growth on nitrous oxide was found. The hexaheme c nitrite reductase of “Spirillum” 5175 was an inducible enzyme. It was present in cells cultivated with nitrate or nitrite as electron acceptor. It was absent in cells grown with fumarate, but appeared in high concentration in “Spirillum” 5175 grown on elemental sulfur. Furthermore, the dissimilatory enzymes nitrate reductase and hexaheme c nitrite reductase were localized in the periplasmic part of the cytoplasmic membrane.  相似文献   

20.
Summary Low molecular weight nitrogenous impurity compounds as well as raffinose are negative quality factors that interfere with efficient processing of sugarbeet (Beta vulgaris L.) for sucrose. In order to identify nutrient media for cell selection of biochemical mutants or transgenics that might have reduced levels of these processing impurities, the ability of 10 endogenous compounds to serve as sole nitrogen or carbon source for suspension plating and subculture callus growth was evaluated. The most productive concentrations of nitrate, ammonium, l-glutamine, l-glutamate, urea, and l-proline as sole nitrogen sources supported plating callus growth at 106, 159, 233, 167, 80, and 52%, respectively, as well as the historical 60 mM mix of nitrate and ammonium in Murashige-Skoog medium. Glycine betaine and choline did not support growth. d(+) Raffinose and d(+) galactose supported plating callus growth only 67 and 25%, respectively, as well as sucrose as sole carbohydrate source. No callus growth occurred on glutamine, glutamate, or glycine betaine as the sole carbon or carbon plus nitrogen source. Platings on either nitrate or ammonium as sole nitrogen source did not differ in sensitivity to the nitrate uptake inhibitor phenylglyoxal, suggesting that phenylglyoxal lacks the specificity for use in selection for mutants of nitrate uptake. The ability of raffinose to be used as the carbon source, and glutamine or glutamate as the nitrogen source, may preclude their use for selection of genetic variants accumulating less of these processing impurities. However, mutants or transgenics able to utilize either glutamine, glutamate, or glycine betaine might be selectable on media containing any one of these as carbon, nitrogen, or carbon plus nitrogen source, respectively, that is incapable of supporting wild-type cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号