首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycopeptides representing each individual N-glycosylation site in six animal and plant glycoproteins (ovoinhibitor and ovotransferrin, orosomucoid, antitrypsin, phaseolin, and phytohemagglutinin) have been isolated and compared by mass spectrometric analysis. Since the isolation step separates each individual peptide regardless of the nature of the glycan attached to it, it is possible to observe the entire spectrum of glycans associated with each site from the mass spectrum of the corresponding glycopeptide. The three glycosylation sites in ovoinhibitor have very similar but not identical glycans; they are significantly different from those observed in the single site of ovotransferrin. The three sites in serum antitrypsin also have quite similar glycans, whereas the five sites in orosomucoid show considerable variation in both the nature and the relative amount of glycans. The two plant glycoproteins each have two sites with very different glycan structures. Except for the first and third glycosylation sites of antitrypsin which were found to have remarkably homogeneous glycans (97 and 90% of a biantennary complex structure), all the individual glycosylation sites contained heterogeneous mixtures of glycan structures. The results support the proposition that each N-linked glycan in a glycoprotein is affected by its unique protein environment to such an extent that each one may be displayed to the processing enzymes as a unique structural entity. On the basis of a limited number of observations of the glycan interfering with chymotryptic but not tryptic cleavage in the proximity of the glycan attachment site, it is proposed that hydrophobic interactions between the protein and the glycan may be involved in the conformational modulation of the glycans.  相似文献   

2.
Although the function of many glycoproteins in the nervous system of fruit flies is well understood, information about the glycosylation profile and glycan attachment sites for such proteins is scarce. In order to fill this gap and to facilitate the analysis of N-linked glycosylation in the nervous system, we have performed an extensive survey of membrane-associated glycoproteins and their N-glycosylation sites isolated from the adult Drosophila brain. Following subcellular fractionation and trypsin digestion, we used different lectin affinity chromatography steps to isolate N-glycosylated glycopeptides. We identified a total of 205 glycoproteins carrying N-linked glycans and revealed their 307 N-glycan attachment sites. The size of the resulting dataset furthermore allowed the statistical characterization of amino acid distribution around the N-linked glycosylation sites. Glycan profiles were analyzed separately for glycopeptides that were strongly and weakly bound to Concanavalin A (Con A), or that failed to bind Concanavalin A, but did bind to wheat germ agglutinin (WGA). High- or paucimannosidic glycans dominated each of the profiles, although the wheat germ agglutinin-bound glycan population was enriched in more extensively processed structures. A sialylated glycan structure was unambiguously detected in the wheat germ agglutinin-bound fraction. Despite the large amount of starting material, insufficient amount of glycopeptides was retained by the Wisteria floribunda (WFA) and Sambucus nigra columns to allow glycan or glycoprotein identification, providing further evidence that the vast majority of glycoproteins in the adult Drosophila brain carry primarily high-mannose, paucimannose, and hybrid glycans. The obtained results should facilitate future genetic and molecular approaches addressing the role of N-glycosylation in the central nervous system (CNS) of Drosophila.  相似文献   

3.
The Gram-negative bacterium Campylobacter jejuni encodes an extensively characterized N-linked protein glycosylation system that modifies many surface proteins with a heptasaccharide glycan. In C. jejuni, the genes that encode the enzymes required for glycan biosynthesis and transfer to protein are located at a single pgl gene locus. Similar loci are also present in the genome sequences of all other Campylobacter species, although variations in gene content and organization are evident. In this study, we have demonstrated that only Campylobacter species closely related to C. jejuni produce glycoproteins that interact with both a C. jejuni N-linked-glycan-specific antiserum and a lectin known to bind to the C. jejuni N-linked glycan. In order to further investigate the structure of Campylobacter N-linked glycans, we employed an in vitro peptide glycosylation assay combined with mass spectrometry to demonstrate that Campylobacter species produce a range of structurally distinct N-linked glycans with variations in the number of sugar residues (penta-, hexa-, and heptasaccharides), the presence of branching sugars, and monosaccharide content. These data considerably expand our knowledge of bacterial N-linked glycan structure and provide a framework for investigating the role of glycosyltransferases and sugar biosynthesis enzymes in glycoprotein biosynthesis with practical implications for synthetic biology and glycoengineering.  相似文献   

4.
Envelope proteins E1 and E2 of the hepatitis C virus (HCV) play a major role in the life cycle of a virus. These proteins are the main components of the virion and are involved in virus assembly. Envelope proteins are modified by N-linked glycosylation, which is supposed to play a role in their stability, in the assembly of the functional glycoprotein heterodimer, in protein folding, and in viral entry. The effects of N-linked glycosylation of HCV protein E1 on the assembly of structural proteins were studied using site-directed mutagenesis in a model system of Sf9 insect cells producing three viral structural proteins with the formation of virus-like particles due to the baculovirus expression system. The removal of individual N-glycosylation sites in HCV protein E1 did not affect the efficiency of its expression in insect Sf9 cells. The electrophoretic mobility of E1 increased with a decreasing number of N-glycosylation sites. The destruction of E1 glycosylation sites N1 or N5 influenced the assembly of the noncovalent E1E2 glycoprotein heterodimer, which is the prototype of the natural complex within the HCV virion. It was also shown that the lack of glycans at E1 sites N1 and N5 significantly reduced the efficiency of E1 expression in mammalian HEK293 T cells.  相似文献   

5.
Porcine surfactant protein D (pSP-D) displays distinctively strong, broad-range inhibitory activity against influenza A virus (IAV). N-Linked glycosylation of the carbohydrate recognition domain (CRD) of pSP-D contributes to the high affinity of this collectin for IAV. To investigate the role of the N-linked glycan further, HEK293E protein expression was used to produce recombinant pSP-D (RpSP-D) that has similar structural and antiviral properties as NpSP-D. We introduced an additional N-linked glycan in the CRD of RpSP-D but this modification did not alter the antiviral activity. Human SP-D is unglycosylated in its CRD and less active against IAV compared with pSP-D. In an attempt to modify its antiviral properties, several recombinant human SP-D (RhSP-D) mutants were constructed with N-linked glycans introduced at various locations within its CRD. To retain lectin activity, necessary for the primary interactions between SP-D and IAV, N-linked glycosylation of RhSP-D was shown to be restricted to the corresponding position in the CRD of either pSP-D or surfactant protein A (SP-A). These N-glycosylated RhSP-D mutants, however, did not show increased neutralization activity against IAV. By developing RhSP-D mutants that also have the pSP-D-specific Ser-Gly-Ala loop inserted in the CRD, we could demonstrate that the N-linked glycan-mediated interactions between pSP-D and IAV involves additional structural prerequisites of the pSP-D CRD. Ultimately, these studies will help to develop highly effective SP-D-based therapeutic and prophylactic drugs against IAV.  相似文献   

6.
Herein we detail the first glycoproteomic analysis of a human pathogen. We describe an approach that enables the identification of organelle and cell surface N-linked glycoproteins from Trypanosoma cruzi, the causative agent of Chagas' disease. This approach is based on a subcellular fractionation protocol to produce fractions enriched in either organelle or plasma membrane/cytoplasmic proteins. Through lectin affinity capture of the glycopeptides from each subcellular fraction and stable isotope labeling of the glycan attachment sites with H(2)18O, we unambiguously identified 36 glycosylation sites on 35 glycopeptides which mapped to 29 glycoproteins. We also present the first expression evidence for 11 T. cruzi specific glycoproteins and provide experimental data indicating that the mucin associated surface protein family (MASP) and dispersed gene family (DGF-1) are post-translationally modified by N-linked glycans.  相似文献   

7.
Glycosylation, particularly N-linked glycosylation, profoundly affects protein folding, oligomerization and stability. The increased efficiency of folding of glycosylated proteins could be due to the chaperone-like activity of glycans, which is observed even when the glycan is not attached to the protein. Covalently linked glycans could also facilitate oligomerization by mediating inter-subunit interactions in the protein or stabilizing the oligomer in other ways. Glycosylation also affects the rate of fibril formation in prion proteins: N-glycans reduce the rate of fibril formation, and O-glycans affect the rate either way depending on factors such as position and orientation. It has yet to be determined whether there is any correlation among the sites of glycosylation and the ensuing effect in multiply glycosylated proteins. It is also not apparent whether there is a common pattern in the conservation of glycans in a related family of glycoproteins, but it is evident that glycosylation is a multifaceted post-translational modification. Indeed, glycosylation serves to "outfit" proteins for fold-function balance.  相似文献   

8.
Hendra virus (HeV) and Nipah virus (NiV) are closely related emerging viruses comprising the Henipavirus genus of the Paramyxovirinae, which are distinguished by their ability to cause fatal disease in both animal and human hosts. These viruses infect cells by a pH-independent membrane fusion event mediated by their attachment (G) and fusion (F) glycoproteins. Previously, we reported on HeV- and NiV-mediated fusion activities and detailed their host-cell tropism characteristics. These studies also suggested that a common cell surface receptor, which could be destroyed by protease, was utilized by both viruses. To further characterize the G glycoprotein and its unknown receptor, soluble forms of HeV G (sG) were constructed by replacing its cytoplasmic tail and transmembrane domains with an immunoglobulin kappa leader sequence coupled to either an S-peptide tag (sG(S-tag)) or myc-epitope tag (sG(myc-tag)) to facilitate purification and detection. Expression of sG was verified in cell lysates and culture supernatants by specific affinity precipitation. Analysis of sG by size exclusion chromatography and sucrose gradient centrifugation demonstrated tetrameric, dimeric, and monomeric species, with the majority of the sG released as a disulfide-linked dimer. Immunofluorescence staining revealed that sG specifically bound to HeV and NiV infection-permissive cells but not to a nonpermissive HeLa cell line clone, suggesting that it binds to virus receptor on host cells. Preincubation of host cells with sG resulted in dose-dependent inhibition of both HeV and NiV cell fusion as well as infection by live virus. Taken together, these data indicate that sG retains important native structural features, and we further demonstrate that administration of sG to rabbits can elicit a potent cross-reactive neutralizing antibody response against infectious HeV and NiV. This HeV sG glycoprotein will be exceedingly useful for structural studies, receptor identification strategies, and vaccine development goals for these important emerging viral agents.  相似文献   

9.
Post-translational modification of proteins regulates many cellular processes. Some modifications, including N-linked glycosylation, serve multiple functions. For example, the attachment of N-linked glycans to nascent proteins in the endoplasmic reticulum facilitates proper folding, whereas retention of high mannose glycans on misfolded glycoproteins serves as a signal for retrotranslocation and ubiquitin-mediated proteasomal degradation. Here we examine the substrate specificity of the only family of ubiquitin ligase subunits thought to target glycoproteins through their attached glycans. The five proteins comprising this FBA family (FBXO2, FBXO6, FBXO17, FBXO27, and FBXO44) contain a conserved G domain that mediates substrate binding. Using a variety of complementary approaches, including glycan arrays, we show that each family member has differing specificity for glycosylated substrates. Collectively, the F-box proteins in the FBA family bind high mannose and sulfated glycoproteins, with one FBA protein, FBX044, failing to bind any glycans on the tested arrays. Site-directed mutagenesis of two aromatic amino acids in the G domain demonstrated that the hydrophobic pocket created by these amino acids is necessary for high affinity glycan binding. All FBA proteins co-precipitated components of the canonical SCF complex (Skp1, Cullin1, and Rbx1), yet FBXO2 bound very little Cullin1, suggesting that FBXO2 may exist primarily as a heterodimer with Skp1. Using subunit-specific antibodies, we further demonstrate marked divergence in tissue distribution and developmental expression. These differences in substrate recognition, SCF complex formation, and tissue distribution suggest that FBA proteins play diverse roles in glycoprotein quality control.  相似文献   

10.
Glycosylation, the addition of carbohydrates to a peptide backbone, is the most extensive cotranslational and posttranslational modification made to proteins by eukaryotic cells. The glycosylation profile of a recombinant glycoprotein can significantly affect its biological activity, which is particularly important when being used in human therapeutic applications. Therefore, defining glycan structures to ensure consistency of recombinant glycoproteins among different batches is critical. In this study we describe a method to prepare N-linked glycans derived from insect cell glycoproteins for structural analysis by capillary electrophoresis. Briefly, glycoproteins obtained from uninfected Spodoptera frugiperda Sf-9 insect cells were precipitated with ammonium sulfate and the glycans were chemically cleaved by hydrazinolysis. Following the regeneration of the glycan reducing terminal residue and the removal of contaminating proteins and peptides, the glycans were fluorescently labeled by reductive amination. Fluorescent labeling greatly enhanced the detection limit of the glycan structures determined by capillary electrophoresis. Five major glycan structures were found that migrated between tetra-mannosylated hexasaccharide and nonamannosylated undecasaccharide standards. Upon alpha-mannosidase digestion the number of glycan structures was reduced to two major structures with shorter migration times than the undigested glycans. None of the glycans were susceptible to hexosaminidase or galactosidase treatment. These results are consistent with the majority of previous results demonstrating hypermannosylated glycan structures in Sf-9 insect cells.  相似文献   

11.
O-linked glycosylation is a ubiquitous protein modification in organisms belonging to several kingdoms. Both microbial and host protein glycans are used by many pathogens for host invasion and immune evasion, yet little is known about the roles of O-glycans in viral pathogenesis. Reportedly, there is no single function attributed to O-glycans for the significant paramyxovirus family. The paramyxovirus family includes many important pathogens, such as measles, mumps, parainfluenza, metapneumo- and the deadly Henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviral cell entry requires the coordinated actions of two viral membrane glycoproteins: the attachment (HN/H/G) and fusion (F) glycoproteins. O-glycan sites in HeV G were recently identified, facilitating use of the attachment protein of this deadly paramyxovirus as a model to study O-glycan functions. We mutated the identified HeV G O-glycosylation sites and found mutants with altered cell-cell fusion, G conformation, G/F association, viral entry in a pseudotyped viral system, and, quite unexpectedly, pseudotyped viral F protein incorporation and processing phenotypes. These are all important functions of viral glycoproteins. These phenotypes were broadly conserved for equivalent NiV mutants. Thus our results identify multiple novel and pathologically important functions of paramyxoviral O-glycans, paving the way to study O-glycan functions in other paramyxoviruses and enveloped viruses.  相似文献   

12.
In eukaryotes, N-linked protein glycosylation is a universal modification involving addition of preformed oligosaccharides to select Asn-Xaa-Ser/Thr motifs and influencing multiple biological events. We recently demonstrated that Campylobacter jejuni is the first member of the Bacteria to possess an N-linked glycan pathway. In this study, high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to probe and quantitate C. jejuni N-glycan biosynthesis in vivo. To confirm HR-MAS NMR findings, glycosylation mutants were screened for chicken colonization potential, and glycoproteins were examined by mass spectrometry and lectin blotting. Consistent with the mechanism in eukaryotes, the combined data indicate that bacterial glycans are assembled en bloc, emphasizing the evolutionary conservation of protein N glycosylation. We also show that under the conditions examined, PglG plays no role in glycan biosynthesis, PglI is the glucosyltransferase and the putative ABC transporter, and WlaB (renamed PglK) is required for glycan assembly. These studies underpin the mechanism of N-linked protein glycosylation in Bacteria and provide a simple model system for investigating protein glycosylation and for exploitation in glycoengineering.  相似文献   

13.
Large-scale transient expression in mammalian cells is a rapid protein production technology often used to shorten overall timelines for biotherapeutics drug discovery. In this study we demonstrate transient expression in a Chinese hamster ovary (CHO) host (ExpiCHO-S™) cell line capable of achieving high recombinant antibody expression titers, comparable to levels obtained using human embryonic kidney (HEK) 293 cells. For some antibodies, ExpiCHO-S™ cells generated protein materials with better titers and improved protein quality characteristics (i.e., less aggregation) than those from HEK293. Green fluorescent protein imaging data indicated that ExpiCHO-S™ displayed a delayed but prolonged transient protein expression process compared to HEK293. When therapeutic glycoproteins containing non-Fc N-linked glycans were expressed in transient ExpiCHO-S™, the glycan pattern was unexpectedly found to have few sialylated N-glycans, in contrast to glycans produced within a stable CHO expression system. To improve N-glycan sialylation in transient ExpiCHO-S™, we co-transfected galactosyltransferase and sialyltransferase genes along with the target genes, as well as supplemented the culture medium with glycan precursors. The authors have demonstrated that co-transfection of glycosyltransferases combined with medium addition of galactose and uridine led to increased sialylation content of N-glycans during transient ExpiCHO-S™ expression. These results have provided a scientific basis for developing a future transient CHO system with N-glycan compositions that are similar to those profiles obtained from stable CHO protein production systems. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2724, 2019  相似文献   

14.
Hepatitis C virus (HCV) envelope glycoproteins are highly glycosylated, with up to 5 and 11 N-linked glycans on E1 and E2, respectively. Most of the glycosylation sites on HCV envelope glycoproteins are conserved, and some of the glycans associated with these proteins have been shown to play an essential role in protein folding and HCV entry. Such a high level of glycosylation suggests that these glycans can limit the immunogenicity of HCV envelope proteins and restrict the binding of some antibodies to their epitopes. Here, we investigated whether these glycans can modulate the neutralizing activity of anti-HCV antibodies. HCV pseudoparticles (HCVpp) bearing wild-type glycoproteins or mutants at individual glycosylation sites were evaluated for their sensitivity to neutralization by antibodies from the sera of infected patients and anti-E2 monoclonal antibodies. While we did not find any evidence that N-linked glycans of E1 contribute to the masking of neutralizing epitopes, our data demonstrate that at least three glycans on E2 (denoted E2N1, E2N6, and E2N11) reduce the sensitivity of HCVpp to antibody neutralization. Importantly, these three glycans also reduced the access of CD81 to its E2 binding site, as shown by using a soluble form of the extracellular loop of CD81 in inhibition of entry. These data suggest that glycans E2N1, E2N6, and E2N11 are close to the binding site of CD81 and modulate both CD81 and neutralizing antibody binding to E2. In conclusion, this work indicates that HCV glycans contribute to the evasion of HCV from the humoral immune response.  相似文献   

15.
The human insulin receptor (IR) homodimer is heavily glycosylated and contains a total of 19 predicted N-linked glycosylation sites in each monomer. The recent crystal structure of the IR ectodomain shows electron density consistent with N-linked glycosylation at the majority of sites present in the construct. Here, we describe a refined structure of the IR ectodomain that incorporates all of the N-linked glycans and reveals the extent to which the attached glycans mask the surface of the IR dimer from interaction with antibodies or other potential therapeutic binding proteins. The usefulness of Fab complexation in the crystallization of heavily glycosylated proteins is also discussed. The compositions of the glycans on IR expressed in CHO-K1 cells and the glycosylation deficient Lec8 cell line were determined by protease digestion, glycopeptide purification, amino acid sequence analysis, and mass spectrometry. Collectively the data reveal: multiple species of complex glycan at residues 25, 255, 295, 418, 606, 624, 742, 755, and 893 (IR-B numbering); multiple species of high-mannose glycan at residues 111 and 514; a single species of complex glycan at residue 671; and a single species of high-mannose glycan at residue 215. Residue 16 exhibited a mixture of complex, hybrid, and high-mannose glycan species. Of the remaining five predicted N-linked sites, those at residues 397 and 906 were confirmed by amino acid sequencing to be glycosylated, while that at residue 78 and the atypical (NKC) site at residue 282 were not glycosylated. The peptide containing the final site at residue 337 was not recovered but is seen to be glycosylated in the electron density maps of the IR ectodomain. The model of the fully glycosylated IR reveals that the sites carrying high-mannose glycans lie at positions of relatively low steric accessibility.  相似文献   

16.
Bence M  Sahin-Tóth M 《The FEBS journal》2011,278(22):4338-4350
Human chymotrypsin C (CTRC) plays a protective role in the pancreas by mitigating premature trypsinogen activation through degradation. Mutations that abolish activity or secretion of CTRC increase the risk for chronic pancreatitis. The aim of the present study was to determine whether human CTRC undergoes asparagine-linked (N-linked) glycosylation and to examine the role of this modification in CTRC folding and function. We abolished potential sites of N-linked glycosylation (Asn-Xaa-Ser/Thr) in human CTRC by mutating the Asn residues to Ser individually or in combination, expressed the CTRC mutants in HEK 293T cells and determined their glycosylation state using PNGase F and endo H digestion. We found that human CTRC contains a single N-linked glycan on Asn52. Elimination of N-glycosylation by mutation of Asn52 (N52S) reduced CTRC secretion about 10-fold from HEK 293T cells but had no effect on CTRC activity or inhibitor binding. Overexpression of the N52S CTRC mutant elicited endoplasmic reticulum stress in AR42J acinar cells, indicating that N-glycosylation is required for folding of human CTRC. Despite its important role, Asn52 is poorly conserved in other mammalian CTRC orthologs, including the rat which is monoglycosylated on Asn90. Introduction of the Asn90 site in a non-glycosylated human CTRC mutant restored full glycosylation but only partially rescued the secretion defect. We conclude that N-linked glycosylation of human CTRC is required for efficient folding and secretion; however, the N-linked glycan is unimportant for enzyme activity or inhibitor binding. The position of the N-linked glycan is critical for optimal folding, and it may vary among the otherwise highly homologous mammalian CTRC sequences.  相似文献   

17.
The membrane glycoproteins (Gn and Gc) of Bunyamwera virus (BUN, family Bunyaviridae) contain three potential sites for the attachment of N-linked glycans: one site (N60) on Gn and two (N624 and N1169) on Gc. We determined that all three sites are glycosylated. Digestion of the glycoproteins with endo-beta-N-acetylglucosaminidase H (endo H) or peptide:N-glycosidase F revealed that Gn and Gc differ significantly in their glycan status and that late in infection Gc glycans remain endo H sensitive. The roles of the N-glycans in intracellular trafficking of the glycoproteins to the Golgi, protein folding, and virus replication were investigated by mutational analysis and confocal immunofluorescence. Elimination of the glycan on Gn, by changing N60 to a Q residue, resulted in the protein misfolding and failure of both Gn and Gc proteins to traffic to the Golgi complex. We were unable to rescue a viable virus by reverse genetics from a cDNA containing the N60Q mutation. In contrast, mutant Gc proteins lacking glycans on either N624 or N1169, or both sites, were able to target to the Golgi. Gc proteins containing mutations N624Q and N1169Q acquired endo H resistance. Three viable N glycosylation-site-deficient viruses, lacking glycans on one site or both sites on Gc, were created by reverse genetics. The viability of these recombinant viruses and analysis of growth kinetics indicates that the glycans on Gc are not essential for BUN replication, but they do contribute to the efficiency of virus infection.  相似文献   

18.
While glycoproteins are abundant in nature, and changes in glycosylation occur in cancer and other diseases, glycoprotein characterization remains a challenge due to the structural complexity of the biopolymers. This paper presents a general strategy, termed GlyDB, for glycan structure annotation of N-linked glycopeptides from tandem mass spectra in the LC-MS analysis of proteolytic digests of glycoproteins. The GlyDB approach takes advantage of low-energy collision-induced dissociation of N-linked glycopeptides that preferentially cleaves the glycosidic bonds while the peptide backbone remains intact. A theoretical glycan structure database derived from biosynthetic rules for N-linked glycans was constructed employing a novel representation of branched glycan structures consisting of multiple linear sequences. The commonly used peptide identification program, Sequest, could then be utilized to assign experimental tandem mass spectra to individual glycoforms. Analysis of synthetic glycopeptides and well-characterized glycoproteins demonstrate that the GlyDB approach can be a useful tool for annotation of glycan structures and for selection of a limited number of potential glycan structure candidates for targeted validation.  相似文献   

19.
We describe in this report the characterization of the recently discovered N-linked glycosylation locus of the human bacterial pathogen Campylobacter jejuni, the first such system found in a species from the domain Bacteria. We exploited the ability of this locus to function in Escherichia coli to demonstrate through mutational and structural analyses that variant glycan structures can be transferred onto protein indicating the relaxed specificity of the putative oligosaccharyltransferase PglB. Structural data derived from these variant glycans allowed us to infer the role of five individual glycosyltransferases in the biosynthesis of the N-linked heptasaccharide. Furthermore, we show that C. jejuni- and E. coli-derived pathways can interact in the biosynthesis of N-linked glycoproteins. In particular, the E. coli encoded WecA protein, a UDP-GlcNAc: undecaprenylphosphate GlcNAc-1-phosphate transferase involved in glycolipid biosynthesis, provides for an alternative N-linked heptasaccharide biosynthetic pathway bypassing the requirement for the C. jejuni-derived glycosyltransferase PglC. This is the first experimental evidence that biosynthesis of the N-linked glycan occurs on a lipid-linked precursor prior to transfer onto protein. These findings provide a framework for understanding the process of N-linked protein glycosylation in Bacteria and for devising strategies to exploit this system for glycoengineering.  相似文献   

20.
Larkin A  Imperiali B 《Biochemistry》2011,50(21):4411-4426
Asparagine-linked glycosylation involves the sequential assembly of an oligosaccharide onto a polyisoprenyl donor, followed by the en bloc transfer of the glycan to particular asparagine residues within acceptor proteins. These N-linked glycans play a critical role in a wide variety of biological processes, such as protein folding, cellular targeting and motility, and the immune response. In the past decade, research in the field of N-linked glycosylation has achieved major advances, including the discovery of new carbohydrate modifications, the biochemical characterization of the enzymes involved in glycan assembly, and the determination of the biological impact of these glycans on target proteins. It is now firmly established that this enzyme-catalyzed modification occurs in all three domains of life. However, despite similarities in the overall logic of N-linked glycoprotein biosynthesis among the three kingdoms, the structures of the appended glycans are markedly different and thus influence the functions of elaborated proteins in various ways. Though nearly all eukaryotes produce the same nascent tetradecasaccharide (Glc(3)Man(9)GlcNAc(2)), heterogeneity is introduced into this glycan structure after it is transferred to the protein through a complex series of glycosyl trimming and addition steps. In contrast, bacteria and archaea display diversity within their N-linked glycan structures through the use of unique monosaccharide building blocks during the assembly process. In this review, recent progress toward gaining a deeper biochemical understanding of this modification across all three kingdoms will be summarized. In addition, a brief overview of the role of N-linked glycosylation in viruses will also be presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号