首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The increasing demand for insect pollinated crops and high recent losses of honey bee colonies raise concerns about food security. Systemic insecticides are recognized as one of the drivers of worldwide honey and wild bee declines. Particularly honey bees in agricultural environments are exposed to pesticides when they collect crop pollen and nectar. However, landscape scale studies which analyze pollen use and foraging distances of honey bees on mass-flowering crops like maize to evaluate potential exposure risks are currently lacking. In an experimental approach on a landscape scale we took advantage of intra-colonial dance communication to gather information about the location of utilized pollen resources. During maize flowering, four observation hives were placed in and rotated between 11 different landscapes which covered a gradient from low to high maize acreage. A higher frequency of dances for foraging locations on maize fields compared to other land use types shows that maize is an intensively used pollen resource for honey bee colonies. Mean foraging distances were significantly shorter for maize pollen than for other pollen origins. The percentage of maize pollen foragers did not increase with maize acreage in the landscape. The proportion of grassland area providing alternative pollen sources did not reduce the percentage of maize pollen foragers. Our findings allow estimating the distance-related exposure risk of honey bee colonies to pollen from surrounding maize fields treated with systemic insecticides. Similarly, the results can be used to estimate the exposure to transgenic maize pollen, which is relevant for honey production in European countries. Provision of alternative pollen resources within agri-environmental schemes could potentially reduce exposure risk to pesticide contaminated crop pollen.  相似文献   

2.
The ecologically and economic important honey bee (Apis mellifera) is a key non-target arthropod species in environmental risk assessment (ERA) of genetically modified (GM) crops. Honey bee larvae are directly exposed to transgenic products by the consumption of GM pollen. But most ERA studies only consider responses of adult bees, although Bt-proteins primarily affect the larval phases of target organisms. We adopted an in vitro larvae rearing system, to assess lethal and sublethal effects of Bt-pollen consumption in a standardized eco-toxicological bioassay. The effects of pollen from two Bt-maize cultivars, one expressing a single and the other a total of three Bt-proteins, on the survival and prepupae weight of honey bee larvae were analyzed. The control treatments included pollen from three non-transgenic maize varieties and of Heliconia rostrata. Three days old larvae were fed the realistic exposure dose of 2 mg pollen within the semi-artificial diet. The larvae were monitored over 120 h, until the prepupal stage, where larvae terminate feeding and growing. Neither single nor stacked Bt-maize pollen showed an adverse effect on larval survival and the prepupal weight. In contrast, feeding of H. rostrata pollen caused significant toxic effects. The results of this study indicate that pollen of the tested Bt-varieties does not harm the development of in vitro reared A. mellifera larvae. To sustain the ecosystem service of pollination, Bt-impact on A. mellifera should always be a crucial part of regulatory biosafety assessments. We suggest that our approach of feeding GM pollen on in vitro reared honey bee larvae is well suited of becoming a standard bioassay in regulatory risk assessments schemes of GM crops.  相似文献   

3.
Li Y  Meissle M  Romeis J 《PloS one》2008,3(8):e2909
Adults of the common green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), are prevalent pollen-consumers in maize fields. They are therefore exposed to insecticidal proteins expressed in the pollen of insect-resistant, genetically engineered maize varieties expressing Cry proteins derived from Bacillus thuringiensis (Bt). Laboratory experiments were conducted to evaluate the impact of Cry3Bb1 or Cry1Ab-expressing transgenic maize (MON 88017, Event Bt176) pollen on fitness parameters of adult C. carnea. Adults were fed pollen from Bt maize varieties or their corresponding near isolines together with sucrose solution for 28 days. Survival, pre-oviposition period, fecundity, fertility and dry weight were not different between Bt or non-Bt maize pollen treatments. In order to ensure that adults of C. carnea are not sensitive to the tested toxins independent from the plant background and to add certainty to the hazard assessment, adult C. carnea were fed with artificial diet containing purified Cry3Bb1 or Cry1Ab at about a 10 times higher concentration than in maize pollen. Artificial diet containing Galanthus nivalis agglutinin (GNA) was included as a positive control. No differences were found in any life-table parameter between Cry protein containing diet treatments and control diet. However, the pre-oviposition period, daily and total fecundity and dry weight of C. carnea were significantly negatively affected by GNA-feeding. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources as well as the uptake by C. carnea was confirmed. These results show that adults of C. carnea are not affected by Bt maize pollen and are not sensitive to Cry1Ab and Cry3Bb1 at concentrations exceeding the levels in pollen. Consequently, Bt maize pollen consumption will pose a negligible risk to adult C. carnea.  相似文献   

4.
Larvae and imagos of bees rely exclusively on floral rewards as a food source but host-plant range can vary greatly among bee species. While oligolectic species forage on pollen from a single family of host plants, polylectic bees, such as bumblebees, collect pollen from many families of plants. These polylectic species contend with interspecific variability in essential nutrients of their host-plants but we have only a limited understanding of the way in which chemicals and chemical combinations influence bee development and feeding behaviour. In this paper, we investigated five different pollen diets (Calluna vulgaris, Cistus sp., Cytisus scoparius, Salix caprea and Sorbus aucuparia) to determine how their chemical content affected bumblebee colony development and pollen/syrup collection. Three compounds were used to characterise pollen content: polypeptides, amino acids and sterols. Several parameters were used to determine the impact of diet on micro-colonies: (i) Number and weight of larvae (total and mean weight of larvae), (ii) weight of pollen collected, (iii) pollen efficacy (total weight of larvae divided by weight of the pollen collected) and (iv) syrup collection. Our results show that pollen collection is similar regardless of chemical variation in pollen diet while syrup collection is variable. Micro-colonies fed on S. aucuparia and C. scoparius pollen produced larger larvae (i.e. better mates and winter survivors) and fed less on nectar compared to the other diets. Pollen from both of these species contains 24-methylenecholesterol and high concentrations of polypeptides/total amino acids. This pollen nutritional “theme” seems therefore to promote worker reproduction in B. terrestris micro-colonies and could be linked to high fitness for queenright colonies. As workers are able to selectively forage on pollen of high chemical quality, plants may be evolutionarily selected for their pollen content, which might attract and increase the degree of fidelity of generalist pollinators, such as bumblebees.  相似文献   

5.
Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.  相似文献   

6.
Honey bees display a powerful ability to recognize pollen from most plants as food and non-pollen materials as not being food. We sequentially extracted a mixed species blend of pollen with a range of non polar to polar solvents and tested the extracts for attractiveness and feeding enhancement by young bees. Both non polar and polar materials were independently attractive when added in trace quantities to a plain artificial diet. The attractants have little inherent nutritional value, as addition of phagostimulants to artificial diets did not increase the life spans of bees compared to phagostimulant-free diets. These data indicate that pollen phagostimulants consist not of a single or a few specific compounds, but rather are a suite of diverse components that additively or synergistically serve to exceed a threshold level of stimulation necessary for feeding.  相似文献   

7.
Elucidating the mechanisms by which honey bees process pollen vs. protein supplements are important in the generation of artificial diets needed to sustain managed honeybees. We measured the effects of diet on protein concentration, hypopharyngeal gland development and virus titers in worker honey bees fed either pollen, a protein supplement (MegaBee), or a protein-free diet of sugar syrup. Workers consumed more pollen than protein supplement, but protein amounts and size of hypopharyngeal gland acini did not differ between the two feeding treatments. Bees fed sugar syrup alone had lower protein concentrations and smaller hypopharyngeal glands compared with the other feeding treatments especially as the bees aged. Deformed wing virus was detected in workers at the start of a trial. The virus concentrations increased as bees aged and were highest in those fed sugar syrup and lowest in bees fed pollen. Overall results suggest a connection between diet, protein levels and immune response and indicate that colony losses might be reduced by alleviating protein stress through supplemental feeding.  相似文献   

8.
Despite their importance as pollinators in crops and wild plants, solitary bees have not previously been included in non-target testing of insect-resistant transgenic crop plants. Larvae of many solitary bees feed almost exclusively on pollen and thus could be highly exposed to transgene products expressed in the pollen. The potential effects of pollen from oilseed rape expressing the cysteine protease inhibitor oryzacystatin-1 (OC-1) were investigated on larvae of the solitary bee Osmia bicornis (= O. rufa). Furthermore, recombinant OC-1 (rOC-1), the Bt toxin Cry1Ab and the snowdrop lectin Galanthus nivalis agglutinin (GNA) were evaluated for effects on the life history parameters of this important pollinator. Pollen provisions from transgenic OC-1 oilseed rape did not affect overall development. Similarly, high doses of rOC-1 and Cry1Ab as well as a low dose of GNA failed to cause any significant effects. However, a high dose of GNA (0.1%) in the larval diet resulted in significantly increased development time and reduced efficiency in conversion of pollen food into larval body weight. Our results suggest that OC-1 and Cry1Ab expressing transgenic crops would pose a negligible risk for O. bicornis larvae, whereas GNA expressing plants could cause detrimental effects, but only if bees were exposed to high levels of the protein. The described bioassay with bee brood is not only suitable for early tier non-target tests of transgenic plants, but also has broader applicability to other crop protection products.  相似文献   

9.
Six phytophagous mites, maize pollen, and two artificial diets were fed to Amblyseius ovalis to evaluate their food suitability for the predator. The parafilm diet-chip of Hager and Tassan was adopted for artificial diet studies. The floating leaf method was the best among all tested methods, producing high survival, developmental, and reproductive rates of the predator. Offspring of A. ovalis fecding on artificial diets did not complete their life cycles. A. ovalis feeding on E. orientalis, O. mangiferus, ad O. taiwanicus developed into adult form faster than those feeding on other food resources. Predators feeding on the natural food, except those feeding on T. kanzawai, had much higher immatural survival rates, lower escape rates, and shorter developmental durations than those feeding on the artificial diets.All A. ovalis laid an average of two eggs per female per day after 2 days of preoviposition, except for those feeding on T. kanzawai which produced none. A. ovalis feeding on artificial diets showed a shorter oviposition period, lower daily and total reproductive rates, and shorter longevity. The complicated webbing life type of T. kanzawai inhibited the activities of A. ovalis, indicating that the predators may require nutrients other than T. kanzawai eggs to molt into adults and to reproduce. The functions varying the phytoseiid-tetranychid relationship during the predator's approach to the microhabitat of the prey were postulated from the predator's structures and the prey's life type. Most predator eggs were laid by 2–18 day-old females feeding on natural food resources. A. ovalis retained its high activity on the low webbing habitats of O. mangiferus and E. orientalis, and on maize pollen. The intrinsic rate of increase, mean generation time, and net reproductive rate of A. ovalis on each of nine tested food resources were evaluated from its life tables. The predator showed the highest intrinsic rates of increase when feeding on the prey of E. orientalis, O. mangiferus, and on maize pollen, and the lowest rates when feeding on the artificial diet even when the immatures had fed on the O. mangiferus and maize pollen. Consequently, the optimal food resources for A. ovalis appear to be O. mangiferus or O. oriintalis with supplements of maize pollen. When fed on these food resources, the predators demonstrated the highest rates of survival, longevity, fecundity, and intrinsic increase.  相似文献   

10.
Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields   总被引:5,自引:0,他引:5  
Abstract.  1. To assess the risks of an insect-resistant transgenic plant for non-target arthropods, it is important to investigate the exposure of non-target species to the transgene product. Exposure of predators in the field depends on the toxin levels in food sources, their feeding ecology and that of their prey.
2. To verify the transmission of Cry1Ab toxin through the food chain, and thus exposure of predators in the field, samples from different plant tissues, herbivores, and predators in Bt maize fields in Spain (Event 176) were collected at different periods over the season and the toxin content was measured using ELISA. Complementary laboratory studies were performed with the omnivorous predator Orius majusculus to assess the toxin uptake and persistence after feeding on variable Bt-containing food sources.
3. Field results revealed that toxin content in some herbivores was negligible (aphids, thrips, leafhoppers) compared with those in spider mites. The latter herbivore only occurred after pollen shed and contained three times greater toxin levels than Bt maize leaves.
4. Data confirmed that the Bt toxin can be transferred to predators, that is to say to Orius spp., Chrysoperla spp., and Stethorus sp. This only applied when Bt maize pollen or spider mites were available. The passage of Bt toxin to O. majusculus via these two food sources was also confirmed in the laboratory. Contrastingly, some predators in the field (hemerobiids, Nabis sp., Hippodamia sp., Demetrias sp.) contained no or negligible toxin levels even when pollen or spider mites were present.
5. Besides essential information for exposure assessment of numerous arthropod predators, this study provides an insight into the feeding ecology of different arthropods in the maize system.  相似文献   

11.
Populations of honey bees and other pollinators have declined worldwide in recent years. A variety of stressors have been implicated as potential causes, including agricultural pesticides. Neonicotinoid insecticides, which are widely used and highly toxic to honey bees, have been found in previous analyses of honey bee pollen and comb material. However, the routes of exposure have remained largely undefined. We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions) growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen) or by contact (soil/planter dust) is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of large-scale annual cropping systems that utilize neonicotinoid seed treatments.  相似文献   

12.
Transgenic strategies for the nutritional enhancement of plants   总被引:1,自引:0,他引:1  
The nutrients in the human diet ultimately come from plants. However, all our major food crops lack certain essential vitamins and minerals. Although a varied diet provides adequate nutrition, much of the human population, particularly in developing countries, relies on staple crops, such as rice or maize, which does not provide the full complement of essential nutrients. Malnutrition is a significant public health issue in most of the developing world. One way to address this problem is through the enhancement of staple crops to increase their essential nutrient content. Here, we review the current strategies for the biofortification of crops, including mineral fertilization and conventional breeding but focusing on transgenic approaches which offer the most rapid way to develop high-nutrient commercial cultivars.  相似文献   

13.
Concerns have been raised that Bt maize pollen may have adverse effects on non‐target organisms; consequently, there is a general call for Bt maize risk assessment evaluating lethal and sublethal side effects. Spiders play an important economic and ecological role as pest predators in various crops, including maize. Web‐building spiders, especially, may be exposed to the Cry1Ab toxin of Bt maize by the ingestion of pollen via ‘recycling’ of pollen‐dusted webs and intentional pollen feeding. In this study, the potential Bt maize pollen exposure of orb‐web spiders was quantified in maize fields and adjacent field margins, and laboratory experiments were conducted to evaluate the possible effects of Bt maize pollen consumption on juvenile garden spiders, Araneus diadematus (Clerck) (Araneae: Araneidae). In maize fields and neighbouring field margins, web‐building spiders were exposed to high amounts of Bt maize pollen. However, a laboratory bioassay showed no effects of Bt maize pollen on weight increase, survival, moult frequency, reaction time, and various web variables of A. diadematus. A pyrethroid insecticide (Baythroid) application affected weight increase, survival, and reaction time of spiders negatively. In conclusion, the insecticide tested showed adverse effects on the garden spider, whereas the consumption of Bt maize pollen did not. This study is the first one on Bt maize effects on orb‐web spiders, and additional research is recommended in order to account for further spider species, relative fitness parameters, prey‐mediated effects, and possible long‐term chronic consequences of Bt exposure.  相似文献   

14.
Abstract.  1. Although pollen is a vital nutritional resource for honey bees, Apis mellifera , the influence of pollen quality on their foraging behaviour is little understood.
2. In choice-test experiments, bees showed no innate pollen-foraging preferences, but preferred oilseed rape Brassica napus pollen over field bean Vicia faba pollen after previous foraging experience of oilseed rape.
3. The free amino acid content of oilseed rape and field bean pollen was compared using high-performance liquid chromatography. Oilseed rape pollen contained a greater proportion of the most essential amino acids required by honey bees (valine, leucine, and isoleucine) than field bean, suggesting that oilseed rape pollen is of greater nutritional quality for honey bees than is field bean pollen.
4. Honey bee foraging preferences appeared to reflect pollen quality. The hypothesis that pollen amino acid composition affects the foraging behaviour of honey bees is discussed.  相似文献   

15.
The maintenance of the immune system can be costly, and a lack of dietary protein can increase the susceptibility of organisms to disease. However, few studies have investigated the relationship between protein nutrition and immunity in insects. Here, we tested in honeybees (Apis mellifera) whether dietary protein quantity (monofloral pollen) and diet diversity (polyfloral pollen) can shape baseline immunocompetence (IC) by measuring parameters of individual immunity (haemocyte concentration, fat body content and phenoloxidase activity) and glucose oxidase (GOX) activity, which enables bees to sterilize colony and brood food, as a parameter of social immunity. Protein feeding modified both individual and social IC but increases in dietary protein quantity did not enhance IC. However, diet diversity increased IC levels. In particular, polyfloral diets induced higher GOX activity compared with monofloral diets, including protein-richer diets. These results suggest a link between protein nutrition and immunity in honeybees and underscore the critical role of resource availability on pollinator health.  相似文献   

16.
转Bt基因玉米的生态安全性研究进展   总被引:3,自引:0,他引:3  
随着转基因作物的应用和推广 ,转 Bt基因作物释放后对生态环境及其它方面产生的潜在影响越来越受到重视。分别从生物活性杀虫晶体蛋白在土壤中的残留特性、杀虫晶体蛋白对土壤中非目标生物的影响、转 Bt基因玉米植株体成分的变化、转Bt基因玉米花粉中杀虫晶体蛋白的表达特性及其在田间和马力筋叶片上的散积状况、花粉中表达的杀虫晶体蛋白对君主斑蝶的毒性、君主斑蝶幼虫暴露在 Bt花粉中的概率及综合风险评价估算等方面对转 Bt基因玉米产生的杀虫晶体蛋白与土壤生态环境的相互作用、花粉对非目标生物影响的研究现状进行了综述。通过对转 Bt基因作物生态安全性的科学评价和广泛宣传 ,以确保生物技术的健康发展。  相似文献   

17.
In many nectarless flowering plants, pollen serves as both the carrier of male gametes and as food for pollinators. This can generate an evolutionary conflict if the use of pollen as food by pollinators reduces the number of gametes available for cross‐fertilization. Heteranthery, the production of two or more stamen types by individual flowers reduces this conflict by allowing different stamens to specialize in ‘pollinating’ and ‘feeding’ functions. We used experimental studies of Solanum rostratum (Solanaceae) and theoretical models to investigate this ‘division of labour’ hypothesis. Flight cage experiments with pollinating bumble bees (Bombus impatiens) demonstrated that although feeding anthers are preferentially manipulated by bees, pollinating anthers export more pollen to other flowers. Evolutionary stability analysis of a model of pollination by pollen consumers indicated that heteranthery evolves when bees consume more pollen than should optimally be exchanged for visitation services, particularly when pollinators adjust their visitation according to the amount of pollen collected.  相似文献   

18.
Adult bees and wasps provide all the food their offspring require to grow from egg to adult. For a given diet, offspring body size generally increases with an increase in the amount of food consumed as a larva, but the extent to which body size is influenced by the type of food consumed is poorly known. Pollen ranges from 2–60% protein among plant species, and bees are extremely efficient at assimilating nitrogen; therefore, it seems likely that either parent bees adjust the size of larval provisions to compensate for differences in pollen protein concentration or bee offspring attain different body size depending on the pollen type(s) consumed as a larva. We presented the generalist sweat bee Lasioglossum zephyrum with pollen diets that differed in protein content and monitored offspring body size during two experiments. In a protein supplementation experiment, diets ranged from 20–66% protein and consisted of Typha pollen amended with soy protein. On a pollen/soy diet, offspring body size increased 25% with a shift from 20–37% protein, but did not increase further at greater protein concentrations. In a multiple pollen experiment, pollen diets ranged from 20–39% protein and consisted of eight pollens that differed naturally in protein concentration. The largest offspring arose from the most protein-rich pollens, whereas much smaller bees developed on protein-poor pollens. Provision size only predicted offspring size when pollen type, and therefore protein quantity, was considered. Adult foragers did not adjust provision size to compensate for pollen protein. Therefore, offspring body size appears to result from a combination of controlled (provision size) and uncontrolled (pollen quality) factors that arise out of bee foraging decisions.  相似文献   

19.
Bees are essential pollinators of many plants in natural ecosystems and agricultural crops alike. In recent years the decline and disappearance of bee species in the wild and the collapse of honey bee colonies have concerned ecologists and apiculturalists, who search for causes and solutions to this problem. Whilst biological factors such as viral diseases, mite and parasite infections are undoubtedly involved, it is also evident that pesticides applied to agricultural crops have a negative impact on bees. Most risk assessments have focused on direct acute exposure of bees to agrochemicals from spray drift. However, the large number of pesticide residues found in pollen and honey demand a thorough evaluation of all residual compounds so as to identify those of highest risk to bees. Using data from recent residue surveys and toxicity of pesticides to honey and bumble bees, a comprehensive evaluation of risks under current exposure conditions is presented here. Standard risk assessments are complemented with new approaches that take into account time-cumulative effects over time, especially with dietary exposures. Whilst overall risks appear to be low, our analysis indicates that residues of pyrethroid and neonicotinoid insecticides pose the highest risk by contact exposure of bees with contaminated pollen. However, the synergism of ergosterol inhibiting fungicides with those two classes of insecticides results in much higher risks in spite of the low prevalence of their combined residues. Risks by ingestion of contaminated pollen and honey are of some concern for systemic insecticides, particularly imidacloprid and thiamethoxam, chlorpyrifos and the mixtures of cyhalothrin and ergosterol inhibiting fungicides. More attention should be paid to specific residue mixtures that may result in synergistic toxicity to bees.  相似文献   

20.
To investigate the effect of food types on biological aspects and life table parameters of the predacious mite, Neoseiulus californicus (McGregor), immature stages were fed on pollen of maize, Zea mays L. and eggs of Tetranychus urticae Koch, while adult females were offered the same foods and the alternate shift of each food. All individuals of predator females reached adulthood when reared on maize pollen and prey eggs, but their life cycle was significantly longer on pollen than on prey. The shortest preoviposition period of N. californicus occurred after continuous feeding on T. urticae eggs, whereas the longest happened when fed on prey eggs switched to maize pollen. Continuous consuming of maize pollen showed the longest ovipositoin period for the predator, while rearing on maize pollen shifted to prey eggs exhibited the shortest duration. The longest longevity and highest sex ratio of females to total in N. californicus were recorded when continuously utilised pollen, whereas the shortest longevity and lowest sex ratio were noted when continuously consumed prey. On the contrary, the egg production and life table values of the predator were the highest by continuous feeding on prey eggs, while they were the lowest by continuous rearing on maize pollen. Therefore, feeding juveniles on prey eggs and adult females on maize pollen is better for long-term preservation of N. californicus females than continuous feeding on maize pollen due to a shorter developmental duration, a higher egg production and more favourable life table values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号