首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The taxonomic rank of subspecies remains highly contentious, largely because traditional subspecies boundaries have sometimes been contradicted by molecular phylogenetic data. The most complete meta-analysis to date, for instance, found that only 3% of traditional avian subspecies represented distinct phylogenetic lineages. However, the global generality of this phenomenon remains unclear due to this previous study's narrow geographic focus on continental Nearctic and Palearctic subspecies. Here, we present a new global analysis of avian subspecies and show that 36% of avian subspecies are, in fact, phylogenetically distinct. Among biogeographic realms we find significant differences in the proportion of subspecies that are phylogenetically distinct, with Nearctic/Palearctic subspecies showing significantly reduced levels of differentiation. Additionally, there are differences between island and continental subspecies, with continental subspecies significantly less likely to be genetically distinct. These results indicate that the overall level of congruence between taxonomic subspecies and molecular phylogenetic data is greater than previously thought. We suggest that the widespread impression that avian subspecies are not real arises from a predominance of studies focusing on continental subspecies in North America and Eurasia, regions which show unusually low levels of genetic differentiation. The broader picture is that avian subspecies often provide an effective short-cut for estimating patterns of intraspecific genetic diversity, thereby providing a useful tool for the study of evolutionary divergence and conservation.  相似文献   

3.
4.
The modern synthesis has been considered to be wrongly called a "synthesis", since it had completely excluded embryology, and many other disciplines. The recent developments of Evo-Devo have been seen as a step in the right direction, as complementing the modern synthesis, and probably leading to a "new synthesis". My argument is that the absence of embryology from the modern synthesis was the visible sign of a more profound lack: the absence of functional biology in the evolutionary synthesis. I will consider the reasons for this absence, as well as the recent transformations which favoured a closer interaction between these two branches of biology. Then I will describe two examples of recent work in which functional and evolutionary questioning were tightly linked. The most significant part of the paper will be devoted to the transformation of evolutionary theory that can be expected from this encounter: a deep transformation, or simply an experimental confirmation of this theory? I will not choose between these two different possibilities, but will discuss some of the difficulties which make the choice problematic.  相似文献   

5.
6.
7.
8.
Canalization in evolutionary genetics: a stabilizing theory?   总被引:16,自引:0,他引:16  
Canalization is an elusive concept. The notion that biological systems ought to evolve to a state of higher stability against mutational and environmental perturbations seems simple enough, but has been exceedingly difficult to prove. Part of the problem has been the lack of a definition of canalization that incorporates an evolutionary genetic perspective and provides a framework for both mathematical and empirical study. After briefly reviewing the importance of canalization in studies of evolution and development, we aim, with this essay, to outline a research program that builds upon the definition of canalization as the reduction in variability of a trait, and uses molecular genetic approaches to shed light on the problems of canalization.  相似文献   

9.
10.
Local adaptation through natural selection can be inferred in case the additive genetic divergence in a quantitative trait across populations (Q(st)) exceeds the neutral expectation based on differentiation of neutral alleles across these populations (e.g. F(st)). As such, measuring Q(st) in relation to neutral differentiation presents a first-line investigation applicable in evolutionary biology (selection on functional genes) and conservation biology (identification of locally adapted coding genes). However, many species, especially those in need of conservation actions, are not amenable for the kind of breeding design required to estimate either narrow- or broad-sense Q(st). In such cases, Q(st) has been approximated by the phenotypic divergence in a trait across populations (P(st)). I here argue that the critical aspect for how well P(st) approximates Q(st) depends on the extent that additive genetic effects determine variation between populations relative to within populations. I review how the sensitivity of conclusions regarding local adaptation based on P(st) have been evaluated in the literature and find that many studies make a anticonservative null assumption in estimating P(st) and/or use a nonconservative approach to explore sensitivity of their conclusions. Data from two studies that have provided a second, independent assessment of selection in their system suggest that P(st)-F(st) comparisons should be interpreted very conservatively. I conclude with recommendations for improving the robustness of the inferences drawn from comparing P(st) with neutral differentiation.  相似文献   

11.
Genetics has played only a modest role in drug discovery, but new technologies will radically change this. Whole genome sequencing will identify new drug discovery targets, and emerging methods for the determination of gene function will increase the ability to select robust targets. Detection of single nucleotide polymorphisms and common polymorphisms will enhance the investigation of polygenic diseases and the use of genetics in drug development. Oligonucleotide arraying technologies will allow analysis of gene expression patterns in novel ways.  相似文献   

12.
13.
The protein product of the T-cell leukemia/lymphoma 1 (TCL1) oncogene was recently identified as a novel Akt kinase activator. Its crystal structure predicts regions most likely involved in protein–protein interactions, and complex formation is required for TCL1 to activate Akt. TCL1 is expressed in a broad range of normal and malignant lymphoid cell types and in a high proportion of testicular seminomas of germ cell origin, indicating its potential to serve as a novel anti-cancer drug target. This review is focused on the current state of knowledge of TCL1 and the medical implications of its discovery.  相似文献   

14.

Background

Mitotic chromosome motions have recently been correlated with electrostatic forces, but a lingering "molecular cell biology" paradigm persists, proposing binding and release proteins or molecular geometries for force generation.

Results

Pole-facing kinetochore plates manifest positive charges and interact with negatively charged microtubule ends providing the motive force for poleward chromosome motions by classical electrostatics. This conceptual scheme explains dynamic tracking/coupling of kinetochores to microtubules and the simultaneous depolymerization of kinetochore microtubules as poleward force is generated.

Conclusion

We question here why cells would prefer complex molecular mechanisms to move chromosomes when direct electrostatic interactions between known bound charge distributions can accomplish the same task much more simply.  相似文献   

15.
Social scientific and humanistic research on synthetic biology has focused quite narrowly on questions of epistemology and ELSI. I suggest that to understand this discipline in its full scope, researchers must turn to the objects of the field—synthetic biological artifacts—and study them as the objects in the making of a science yet to be made. I consider one fundamentally important question: how should we understand the material products of synthetic biology? Practitioners in the field, employing a consistent technological optic in the study and construction of biological systems, routinely employ the mantra ‘biology is technology’. I explore this categorization. By employing an established definition of technological artifects drawn from the philosophy of technology, I explore the appropriateness of attributing to synthetic biological artifacts the four criteria of materiality, intentional design, functionality, and normativity. I then explore a variety of accounts of natural kinds. I demonstrate that synthetic biological artifacts fit each kind imperfectly, and display a concomitant ontological ‘messiness’. I argue that this classificatory ambivalence is a product of the field’s own nascence, and posit that further work on kinds might help synthetic biology evaluate its existing commitments and practices.  相似文献   

16.
Although generations of researchers have studied the factors that limit the distributions of species, we still do not seem to understand this phenomenon comprehensively. Traditionally, species’ ranges have been seen as the consequence of abiotic conditions and local adaptation to the environment. However, during the last years it has become more and more evident that biotic factors – such as intra‐ and interspecific interactions or the dispersal capacity of species – and even rapidly occurring evolutionary processes can strongly influence the range of a species and its potential to spread to new habitats. Relevant eco‐evolutionary forces can be found at all hierarchical levels: from landscapes to communities via populations, individuals and genes. We here use the metapopulation concept to develop a framework that allows us to synthesize this broad spectrum of different factors. Since species’ ranges are the result of a dynamic equilibrium of colonization and local extinction events, the importance of dispersal is immediately clear. We highlight the complex interrelations and feedbacks between ecological and evolutionary forces that shape dispersal and result in non‐trivial and partially counter‐intuitive range dynamics. Our concept synthesizes current knowledge on range biology and the eco‐evolutionary dynamics of dispersal. Synthesis What factors are responsible for the dynamics of species' ranges? Answering this question has never been more important than today, in the light of rapid environmental changes. Surprisingly, the ecological and evolutionary dynamics of dispersal – which represent the driving forces behind range formation – have rarely been considered in this context. We here present a framework that closes this gap. Dispersal evolution may be responsible for highly complex and non‐trivial range dynamics. In order to understand these, and possibly provide projections of future range positions, it is crucial to take the ecological and evolutionary dynamics of dispersal into account.  相似文献   

17.
Many think that evolutionary biology has relevance to ethics, but how far that relevance extends is a matter of debate. It is easy to show that pop sociobiological approaches to ethics all commit some type of naturalistic fallacy. More sophisticated attempts, like Donald Campbell's, or, more recently, Robert Richards', are not so easily refuted, but I will show that they too reason fallaciously from facts to values. What remains is the possibility of an evolutionary search for human nature. Unfortunately, evolutionary theory itself seems to imply that the quest for human nature will not be very promising. As far as there is such a thing as human nature, we will have to know it before we can meaningfully talk about its evolution. Anthropological data suggest that we differ widely in our normative judgments. And even where we seem to agree, there is good reason to doubt that we really do so.  相似文献   

18.
19.
The genetic links between p53 and metabolic processes such as oxidative phosphorylation are being studied with increasing interest given that cellular metabolism seems to play an important role in tumorigenesis. This review focuses on how p53 regulation of various metabolic genes may influence redox homeostasis, as the genome is constantly susceptible to oxidative damage, a consequence of living in an aerobic environment. Because p53-like genetic sequences are also found in life forms that may not necessarily benefit from tumor suppression, an evolutionary introduction is given in an attempt to understand why p53 might regulate a basic cellular activity such as metabolism. The presented epidemiologic and experimental data suggest that one reason may be for the homeostatic regulation of oxygen, the essential substrate for reactive oxygen species generation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号