首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. The aminoacyl-imidazole dipeptides carnosine (-alanyl-L-histidine) and anserine (-alanyl-1-methyl-histidine) are present in relatively high concentrations in excitable tissues, such as muscle and nervous tissue. In the present study we describe the existence of a marked sexual dimorphism of carnosine and anserine in skeletal muscles of CD1 mice. In adult animals the concentrations of anserine were higher than those of carnosine in all skeletal muscles studied, and the content of aminoacyl-imidazole dipeptides was remarkably higher in males than in females. Postnatal ontogenic studies and hormonal manipulations indicated that carnosine synthesis was up-regulated by testosterone whereas anserine synthesis increased with age. Regional variations in the concentrations of the dipeptides were observed in both sexes, skeletal muscles from hind legs having higher amounts of carnosine and anserine than those present in fore legs or in the pectoral region. The concentration of L-lysine in skeletal muscles also showed regional variations and a sexual dimorphic pattern with females having higher levels than males in all muscles studied. The results suggest that these differences may be related with the anabolic action of androgens on skeletal muscle.  相似文献   

2.
The main determinant of muscle carnosine (M-Carn) content is undoubtedly species, with, for example, aerobically trained female vegetarian athletes [with circa 13 mmol/kg dry muscle (dm)] having just 1/10th of that found in trained thoroughbred horses. Muscle fibre type is another key determinant, as type II fibres have a higher M-Carn or muscle histidine containing dipeptide (M-HCD) content than type I fibres. In vegetarians, M-Carn is limited by hepatic synthesis of β-alanine, whereas in omnivores this is augmented by the hydrolysis of dietary supplied HCD's resulting in muscle levels two or more times higher. β-alanine supplementation will increase M-Carn. The same increase in M-Carn occurs with administration of an equal molar quantity of carnosine as an alternative source of β-alanine. Following the cessation of supplementation, M-Carn returns to pre-supplementation levels, with an estimated t1/2 of 5-9 weeks. Higher than normal M-Carn contents have been noted in some chronically weight-trained subjects, but it is unclear if this is due to the training per se, or secondary to changes in muscle fibre composition, an increase in β-alanine intake or even anabolic steroid use. There is no measureable loss of M-Carn with acute exercise, although exercise-induced muscle damage may result in raised plasma concentrations in equines. Animal studies indicate effects of gender and age, but human studies lack sufficient control of the effects of diet and changes in muscle fibre composition.  相似文献   

3.
In this paper we describe a significant reduction of nuclear DNA content in skeletal muscle fibers after denervation. Some properties of an endogenous DNAase activity in normal and denervated muscle are also reported.  相似文献   

4.
The determination of carnosine using the diazonium salt of p-bromoaniline and the determination of taurine and of taurine, carnosine, and anserine together using 2,4-dinitro-1-fluorobenzene to give yellow-colored derivatives is the basis for the spectrophotometric assay of these compounds in skeletal muscle. The procedure can be applied directly to aqueous extracts of muscle and is well suited for routine assays of many samples.  相似文献   

5.
Bone and muscle development are both strongly influenced by sex hormones. The purpose of this study was to examine the changes in bone and muscle parameters (bone mineral content - BMC, muscle cross-sectional area - MA) in 130 men aged 31 -60 years, and in 180 pre-menopausal women aged 30-53 years with respect to age, body height and, with the women, their gynecological history (age-at-menarche, number of pregnancies, duration of lactation and use of oral contraception). The study was performed using peripheral quantitative computed tomography (pQCT) at a 65% site of the forearm length. Both BMC and MA were dependent on body height (p<0.0001), but not on age. The BMC/MA ratio was dependent neither on age nor on body height in both genders. MA as well as BMC were found significantly higher in males than in females (p<0.0001 for both variables). We observed a significantly higher BMC/MA ratio in females than in males (p<0.0001). We found no effect either of the analyzed variables of gynecological history on bone/muscle characteristics. The findings highlight the necessity of involving height-adjusted parameters and BMC/MA ratio into bone analysis in adults.  相似文献   

6.
The hair of 132 healthy subjects between 6 and 40 yr old living in the Veneto region in Italy was analyzed by means of HPLC method in order to determine the presence of zinc, copper, nickel, manganese, and lead. The collected samples were subdivided on the basis of age (6–11 and 19–40 yr), and sex and color (black, red, brown, and blond). From the data some evident differences were emphasized. In female hair the content of metals was higher than in male hair independently of color. Blond hair gave the lowest concentration values of the elements studied independently of sex. The maximum amount of the metals was found generally in black hair, followed by red and brown hair. Age seems to have a different influence, with the copper element decreasing appreciably in brown and blond female hair as the age of the subjects increased.  相似文献   

7.
8.
Fat can be stored not only in adipose tissue but also in other tissues such as skeletal muscle. Fat droplets accumulated in skeletal muscle [intramyocellular lipids (IMCLs)] can be quantified by different methods, all with advantages and drawbacks. Here, we briefly review IMCL quantification methods that use biopsy specimens (biochemical quantification, electron microscopy, and histochemistry) and non-invasive alternatives (magnetic resonance spectroscopy, magnetic resonance imaging, and computed tomography). Regarding the physiological role, it has been suggested that IMCL serves as an intracellular source of energy during exercise. Indeed, IMCL content decreases during prolonged submaximal exercise, and analogously to glycogen, IMCL content is increased in the trained state. In addition, IMCL content is highest in oxidative, type 1 muscle fibers. Together, this, indeed, suggests that the IMCL content is increased in the trained state to optimally match fat oxidative capacity and that it serves as readily available fuel. However, elevation of plasma fatty acid levels or dietary fat content also increases IMCL content, suggesting that skeletal muscle also stores fat simply if the availability of fatty acids is high. Under these conditions, the uptake into skeletal muscle may have negative consequences on insulin sensitivity. Besides the evaluation of the various methods to quantify IMCLs, this perspective describes IMCLs as valuable energy stores during prolonged exercise, which, however, in the absence of regular physical activity and with overconsumption of fat, can have detrimental effects on muscular insulin sensitivity.  相似文献   

9.
Carnosine (beta-alanyl-L-histidine), which is present in millimolar concentrations in skeletal muscles, induces Ca2+ release from the heavy fraction of rabbit skeletal muscle sarcoplasmic reticulum by activation ruthenium red-sensitive Ca-release channels. The effect of carnosine is dose-dependent, which indicates the presence of saturable carnosine-binding sites in the Ca-release channel molecule. The half-maximal Ca2+ release is observed in the presence of 8.7 mM carnosine. At the same time, carnosine addition to the medium increases the affinity of sarcoplasmic reticulum Ca-channels for the Ca-release activators, caffeine and adenine nucleotides. It is concluded that carnosine is an endogenous regulator of skeletal muscle sarcoplasmic reticulum Ca-channels which modulates the affinity of these channels for different ligands.  相似文献   

10.
The process of ageing is associated with increased susceptibility to infection. Phagocytes form the primary defence mechanism against infecting microorganisms, but the influence of ageing on phagocyte function remains controversial. In this study we have applied a microtitre plate phagocyte chemiluminescence (CL) assay suitable for clinical use to compare phagocyte oxidative metabolism in younger healthy subjects (age 20–60 years) and healthy older (60–70 years) subjects. Polymorphonuclear leukocytes (PMNL) and monocytes were stimulated using phorbol myristate acetate (PMA), serum opsonized zymosan (SOZ), and non-opsonized zymosan (ZYM) in the presence of both lucigenin and luminol. Monocytes showed a higher luminolenhanced CL response to PMA in males compared with females in the younger age group. No PMNL differences were observed between the sexes. Although no difference were found in relation to age when cells were stimulated with PMA and SOZ, significantly lower background (unstimulated) CL was obtained from PMNL with luminol. PMNL luminol-enhanced CL responses were also lower in response to ZYM. The findings suggest a reduced response of PMNL from older subjects to minimal stimulation. This could be related to abnormalities in the triggering of the respiratory burst or myeloperoxidase release due to ageing. The influence of age and sex should be taken into account in clinical studies of phagocyte CL.  相似文献   

11.
Skeletal muscles undergo specific alterations that are related to the aging process. The incidence of several neuromuscular diseases (e.g., amyotrophic lateral sclerosis (ALS), myasthenia gravis, polymyositis, drug-induced myopathies, late-onset mitochondrial myopathy) is age-related. The increased sensitivity to disease of aging muscle represents an additional age-related negative influence in the presence of existing risk factors (such as a genetic predisposition). The potential significance of carnosine lies on one hand in its possible influence on specific physiological changes in muscle associated with the aging process, and on the other in its effect on oxidative stress and the antioxidative system in specific neuromuscular diseases such as ALS or polymyositis.  相似文献   

12.
It is generally accepted that the muscles of aged individuals contract with less force, have slower relaxation rates, and demonstrate a downward shift in their force-velocity relationship. The factors mediating age-related differences in skeletal muscle fatigue are less clear. The present study was designed to test the hypothesis that age-related shifts in the force-velocity relationship impact the fatigue response in a velocity-dependent manner. Three fatigue protocols, consisting of intermittent, maximum voluntary knee extension contractions performed for 4 min, were performed by 11 young (23.5 ± 0.9 yr, mean ± SE) and 10 older (68.9 ± 4.3) women. The older group fatigued less during isometric contractions than the young group (to 71.1 ± 3.7% initial torque and 59.8 ± 2.5%, respectively; P = 0.02), while the opposite was true during contractions performed at a relatively high angular velocity of 270°·s(-1) (old: 28.0 ± 3.9% initial power, young: 52.1 ± 6.9%; P < 0.01). Fatigue was not different (P = 0.74) between groups during contractions at an intermediate velocity, which was selected for each participant based on their force-velocity relationship. There was a significant association between force-velocity properties and fatigue induced by the intermediate-velocity fatigue protocol in the older (r = 0.72; P = 0.02) and young (r = 0.63; P = 0.04) groups. These results indicate that contractile velocity has a profound impact on age-related skeletal muscle fatigue resistance and suggest that changes in the force-velocity relationship partially mediate this effect.  相似文献   

13.
14.
  • 1.1. Kinetic properties of the inhibitory effect of inorganic phosphate and fluoride and of the activatory effect of potassium ion on human skeletal muscle AMP-deaminase (E.C. 3.5.4.6) have been investigated
  • 2.2. It has been shown that phosphate is a competitive inhibitor (K1, ≈0.8 × 10−3M) and fluoride a noncompetitive inhibitor (K1≈3.2 × 10−3 M) of human muscle AMP-deaminase.
  • 3.3. The changes of potassium ion concentration between 20 and 200 mM did not influence the Michaelis constant which was about 0.9 x 10−3 M at 30°C. Also the change of substrate concentration in the range 40–300 μM did not influence the activation constant for potassium (Ka≈0.4 × 10−1 M).
  • 4.4. Higher concentraion of potassium (200mM) was found to diminish the “temperature sensitivity” of the enzyme activity.
  • 5.5. The energy of activation (E) in the presence of 150 mM KC1 calculated from Arrhenius plot was about 4600 cal/mole of substrate. The heat of the enzyme-substrate complex formation obtained from the plot of log Km vs T−1 was shown to have positive value (+2200 cal/mole) at the temperatures lower than 23°C and negative value (—4100 cal/mole) at the temperatures higher than 23°C.
  相似文献   

15.
Epidemiological studies in humans suggest that skeletal muscle aging is a risk factor for the development of several age‐related diseases such as metabolic syndrome, cancer, Alzheimer's and Parkinson's disease. Here, we review recent studies in mammals and Drosophila highlighting how nutrient‐ and stress‐sensing in skeletal muscle can influence lifespan and overall aging of the organism. In addition to exercise and indirect effects of muscle metabolism, growing evidence suggests that muscle‐derived growth factors and cytokines, known as myokines, modulate systemic physiology. Myokines may influence the progression of age‐related diseases and contribute to the intertissue communication that underlies systemic aging.  相似文献   

16.
Isocratic reverse phase analytical high performance liquid chromatography (HPLC) has been used to examine naturally occurring imidazoles of cardiac and skeletal muscles. Elution of muscle extracts with a phosphate buffer mobile phase from columns packed with hypersil ODS (5 micron) resulted in good separation of the skeletal muscle imidazole-containing dipeptides carnosine and anserine. Measured concentrations corresponded to published values. N-Acetyl forms that were not commercially available were prepared from their parent compounds and their identities verified by NMR-spectroscopy. Examination of frog cardiac muscle confirmed the presence of N-acetylhistidine and also indicated the presence of its 1-methyl derivative. Extracts of mammalian cardiac muscle were examined by HPLC which indicated the presence of low concentrations of carnosine but substantial amounts of N-acetyl forms of histidine, 1-methylhistidine, carnosine and anserine. Fractions corresponding to the numerous peaks were examined using staining systems specific for certain chemical features and compared to results obtained for commercial or synthetic standards. Results of these tests supported the chromatographic data. The total concentrations in cardiac muscle of these imidazole-containing substances (approx. 10 mM) is sufficient to alter significantly the sensitivity of their contractile apparatus to calcium ions.  相似文献   

17.
Summary The levator ani muscle of the rat was examined by correlated light and electron microscopic morphometry. Corrections were made for shrinkage, compression, and differences in stretching. Age, castration, and subsequent testosterone treatment do not affect the fiber number, the filament lattice, and the size of the filaments and myonuclei. The fibers in intact growing males increase in width and length. The number of myonuclei rises, although relatively slower than the amount of contractile material.Castration, performed at six weeks, partially suppresses fiber growth. The increase of mean fiber width is more strongly inhibited than that of fiber length. Myonuclear multiplication is almost completely arrested in castrates, and the amount of contractile material per myonucleus is lower than in intact males of equal age.Testosterone, administered at about two months following orchidectomy, highly accelerates the transversal fiber growth, but fiber length is not significantly influenced. Between the fourth and seventh day of treatment a marked increase in myonuclear number occurs.Analysis of the frequency distribution of the individual fiber widths, which is logarithmic-normal in intact males, revealed that the hormonal influence on the net result of protein anabolism and catabolism markedly differs in the various fibers of a single muscle.With the technical assistance of Tineke J. Hoogenboezem.  相似文献   

18.
Little is known of the vasomotor responses of skeletal muscle arterioles during and following muscle contraction. We hypothesized that aging leads to impaired arteriolar responses to muscle contraction and recovery. Nitric oxide (NO) availability, which is age dependent, has been implicated in components of these kinetics. Therefore, we also hypothesized that changes in the kinetics of vascular responses are associated with the NO pathway. Groups were young (3 mo), old (24 mo), endothelial NO synthase knockout (eNOS-/-), and N(G)-nitro-L-arginine (L-NA)-treated male and female C57BL/6 mice. The kinetics of vasodilation during and following 1 min of contractions of the gluteus maximus muscle were recorded in second-order (regional distribution) and third-order (local control) arterioles. Baseline, peak (during contraction), and maximal diameters (pharmacological) were not affected by age or sex. The kinetics of dilation and recovery were not different between males and females at the young age. There was a significant slowing of vasodilation at the onset of contractions (approximately 2-fold; P < 0.05) and a significant speeding of recovery ( approximately 5-fold; P < 0.05) in old males vs. old females and vs. young eNOS-/-, and L-NA did not affect the kinetics at the onset of muscle contraction. eNOS-/- mimicked the rapid recovery of old males in second-order arterioles; acute NO production (L-NA) explained approximately 50% of this effect. These data demonstrate fundamental age-related differences between the sexes in the dynamic function of skeletal muscle arterioles. Understanding how youthful function persists in females but not males may provide therapeutic insight into clinical interventions to maintain dynamic microvascular control of nutrient supply with age.  相似文献   

19.
20.
Eleven subjects performed one-legged exercise four times per week for 5 wk. The subjects exercised one leg for 45 min with restricted blood flow (R leg), followed by exercise with the other leg at the same absolute workload with unrestricted blood flow (UR leg). mRNA and protein expression were measured in biopsies from the vastus lateralis muscle obtained at rest before the training period, after 10 days, and after 5 wk of training, as well as 120 min after the first and last exercise bouts. Basal Ang-2 and Tie-1 mRNA levels increased in both legs with training. The Ang-2-to-Ang-1 ratio increased to a greater extent in the R leg. The changes in Ang-2 mRNA were followed by similar changes at the protein level. In the R leg, VEGF-A mRNA expression responded transiently after acute exercise both before and after the 5-wk training program. Over the course of the exercise program, there was a concurrent increase in basal VEGF-A protein and VEGFR-2 mRNA in the R leg. Ki-67 mRNA showed a greater increase in the R leg and the protein was localized to the endothelial cells. In summary, the increased translation of VEGF-A is suggested to be caused by the short mRNA burst induced by each exercise bout. The concurrent increase in the Ang-2-to-Ang-1 ratio and the VEGF-expression combined with the higher level of Ki-67 mRNA in the R leg indicate that changes in these systems are of importance also in nonpathological angiogenic condition such as voluntary exercise in humans. It further establish that hypoxia/ischemia-related metabolic perturbation is likely to be involved as stimuli in this process in human skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号