首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider testing whether the nonparametric function in a semiparametric additive mixed model is a simple fixed degree polynomial, for example, a simple linear function. This test provides a goodness-of-fit test for checking parametric models against nonparametric models. It is based on the mixed-model representation of the smoothing spline estimator of the nonparametric function and the variance component score test by treating the inverse of the smoothing parameter as an extra variance component. We also consider testing the equivalence of two nonparametric functions in semiparametric additive mixed models for two groups, such as treatment and placebo groups. The proposed tests are applied to data from an epidemiological study and a clinical trial and their performance is evaluated through simulations.  相似文献   

2.
Zhang D  Lin X  Sowers M 《Biometrics》2000,56(1):31-39
We consider semiparametric regression for periodic longitudinal data. Parametric fixed effects are used to model the covariate effects and a periodic nonparametric smooth function is used to model the time effect. The within-subject correlation is modeled using subject-specific random effects and a random stochastic process with a periodic variance function. We use maximum penalized likelihood to estimate the regression coefficients and the periodic nonparametric time function, whose estimator is shown to be a periodic cubic smoothing spline. We use restricted maximum likelihood to simultaneously estimate the smoothing parameter and the variance components. We show that all model parameters can be easily obtained by fitting a linear mixed model. A common problem in the analysis of longitudinal data is to compare the time profiles of two groups, e.g., between treatment and placebo. We develop a scaled chi-squared test for the equality of two nonparametric time functions. The proposed model and the test are illustrated by analyzing hormone data collected during two consecutive menstrual cycles and their performance is evaluated through simulations.  相似文献   

3.
Hogan JW  Lin X  Herman B 《Biometrics》2004,60(4):854-864
The analysis of longitudinal repeated measures data is frequently complicated by missing data due to informative dropout. We describe a mixture model for joint distribution for longitudinal repeated measures, where the dropout distribution may be continuous and the dependence between response and dropout is semiparametric. Specifically, we assume that responses follow a varying coefficient random effects model conditional on dropout time, where the regression coefficients depend on dropout time through unspecified nonparametric functions that are estimated using step functions when dropout time is discrete (e.g., for panel data) and using smoothing splines when dropout time is continuous. Inference under the proposed semiparametric model is hence more robust than the parametric conditional linear model. The unconditional distribution of the repeated measures is a mixture over the dropout distribution. We show that estimation in the semiparametric varying coefficient mixture model can proceed by fitting a parametric mixed effects model and can be carried out on standard software platforms such as SAS. The model is used to analyze data from a recent AIDS clinical trial and its performance is evaluated using simulations.  相似文献   

4.
Yu Z  Lin X  Tu W 《Biometrics》2012,68(2):429-436
We consider frailty models with additive semiparametric covariate effects for clustered failure time data. We propose a doubly penalized partial likelihood (DPPL) procedure to estimate the nonparametric functions using smoothing splines. We show that the DPPL estimators could be obtained from fitting an augmented working frailty model with parametric covariate effects, whereas the nonparametric functions being estimated as linear combinations of fixed and random effects, and the smoothing parameters being estimated as extra variance components. This approach allows us to conveniently estimate all model components within a unified frailty model framework. We evaluate the finite sample performance of the proposed method via a simulation study, and apply the method to analyze data from a study of sexually transmitted infections (STI).  相似文献   

5.
Bayesian Inference in Semiparametric Mixed Models for Longitudinal Data   总被引:1,自引:0,他引:1  
Summary .  We consider Bayesian inference in semiparametric mixed models (SPMMs) for longitudinal data. SPMMs are a class of models that use a nonparametric function to model a time effect, a parametric function to model other covariate effects, and parametric or nonparametric random effects to account for the within-subject correlation. We model the nonparametric function using a Bayesian formulation of a cubic smoothing spline, and the random effect distribution using a normal distribution and alternatively a nonparametric Dirichlet process (DP) prior. When the random effect distribution is assumed to be normal, we propose a uniform shrinkage prior (USP) for the variance components and the smoothing parameter. When the random effect distribution is modeled nonparametrically, we use a DP prior with a normal base measure and propose a USP for the hyperparameters of the DP base measure. We argue that the commonly assumed DP prior implies a nonzero mean of the random effect distribution, even when a base measure with mean zero is specified. This implies weak identifiability for the fixed effects, and can therefore lead to biased estimators and poor inference for the regression coefficients and the spline estimator of the nonparametric function. We propose an adjustment using a postprocessing technique. We show that under mild conditions the posterior is proper under the proposed USP, a flat prior for the fixed effect parameters, and an improper prior for the residual variance. We illustrate the proposed approach using a longitudinal hormone dataset, and carry out extensive simulation studies to compare its finite sample performance with existing methods.  相似文献   

6.
Yuan Y  Yin G 《Biometrics》2011,67(4):1543-1554
In the estimation of a dose-response curve, parametric models are straightforward and efficient but subject to model misspecifications; nonparametric methods are robust but less efficient. As a compromise, we propose a semiparametric approach that combines the advantages of parametric and nonparametric curve estimates. In a mixture form, our estimator takes a weighted average of the parametric and nonparametric curve estimates, in which a higher weight is assigned to the estimate with a better model fit. When the parametric model assumption holds, the semiparametric curve estimate converges to the parametric estimate and thus achieves high efficiency; when the parametric model is misspecified, the semiparametric estimate converges to the nonparametric estimate and remains consistent. We also consider an adaptive weighting scheme to allow the weight to vary according to the local fit of the models. We conduct extensive simulation studies to investigate the performance of the proposed methods and illustrate them with two real examples.  相似文献   

7.
Wang L  Du P  Liang H 《Biometrics》2012,68(3):726-735
Summary In some survival analysis of medical studies, there are often long-term survivors who can be considered as permanently cured. The goals in these studies are to estimate the noncured probability of the whole population and the hazard rate of the susceptible subpopulation. When covariates are present as often happens in practice, to understand covariate effects on the noncured probability and hazard rate is of equal importance. The existing methods are limited to parametric and semiparametric models. We propose a two-component mixture cure rate model with nonparametric forms for both the cure probability and the hazard rate function. Identifiability of the model is guaranteed by an additive assumption that allows no time-covariate interactions in the logarithm of hazard rate. Estimation is carried out by an expectation-maximization algorithm on maximizing a penalized likelihood. For inferential purpose, we apply the Louis formula to obtain point-wise confidence intervals for noncured probability and hazard rate. Asymptotic convergence rates of our function estimates are established. We then evaluate the proposed method by extensive simulations. We analyze the survival data from a melanoma study and find interesting patterns for this study.  相似文献   

8.
Qu A  Li R 《Biometrics》2006,62(2):379-391
Nonparametric smoothing methods are used to model longitudinal data, but the challenge remains to incorporate correlation into nonparametric estimation procedures. In this article, we propose an efficient estimation procedure for varying-coefficient models for longitudinal data. The proposed procedure can easily take into account correlation within subjects and deal directly with both continuous and discrete response longitudinal data under the framework of generalized linear models. The proposed approach yields a more efficient estimator than the generalized estimation equation approach when the working correlation is misspecified. For varying-coefficient models, it is often of interest to test whether coefficient functions are time varying or time invariant. We propose a unified and efficient nonparametric hypothesis testing procedure, and further demonstrate that the resulting test statistics have an asymptotic chi-squared distribution. In addition, the goodness-of-fit test is applied to test whether the model assumption is satisfied. The corresponding test is also useful for choosing basis functions and the number of knots for regression spline models in conjunction with the model selection criterion. We evaluate the finite sample performance of the proposed procedures with Monte Carlo simulation studies. The proposed methodology is illustrated by the analysis of an acquired immune deficiency syndrome (AIDS) data set.  相似文献   

9.
Zhu  Zhongyi; Fung  Wing K.; He  Xuming 《Biometrika》2008,95(4):907-917
There have been studies on how the asymptotic efficiency ofa nonparametric function estimator depends on the handling ofthe within-cluster correlation when nonparametric regressionmodels are used on longitudinal or cluster data. In particular,methods based on smoothing splines and local polynomial kernelsexhibit different behaviour. We show that the generalized estimationequations based on weighted least squares regression splinesfor the nonparametric function have an interesting property:the asymptotic bias of the estimator does not depend on theworking correlation matrix, but the asymptotic variance, andtherefore the mean squared error, is minimized when the truecorrelation structure is specified. This property of the asymptoticbias distinguishes regression splines from smoothing splines.  相似文献   

10.
Grigoletto M  Akritas MG 《Biometrics》1999,55(4):1177-1187
We propose a method for fitting semiparametric models such as the proportional hazards (PH), additive risks (AR), and proportional odds (PO) models. Each of these semiparametric models implies that some transformation of the conditional cumulative hazard function (at each t) depends linearly on the covariates. The proposed method is based on nonparametric estimation of the conditional cumulative hazard function, forming a weighted average over a range of t-values, and subsequent use of least squares to estimate the parameters suggested by each model. An approximation to the optimal weight function is given. This allows semiparametric models to be fitted even in incomplete data cases where the partial likelihood fails (e.g., left censoring, right truncation). However, the main advantage of this method rests in the fact that neither the interpretation of the parameters nor the validity of the analysis depend on the appropriateness of the PH or any of the other semiparametric models. In fact, we propose an integrated method for data analysis where the role of the various semiparametric models is to suggest the best fitting transformation. A single continuous covariate and several categorical covariates (factors) are allowed. Simulation studies indicate that the test statistics and confidence intervals have good small-sample performance. A real data set is analyzed.  相似文献   

11.
Statistical analysis of longitudinal data often involves modeling treatment effects on clinically relevant longitudinal biomarkers since an initial event (the time origin). In some studies including preventive HIV vaccine efficacy trials, some participants have biomarkers measured starting at the time origin, whereas others have biomarkers measured starting later with the time origin unknown. The semiparametric additive time-varying coefficient model is investigated where the effects of some covariates vary nonparametrically with time while the effects of others remain constant. Weighted profile least squares estimators coupled with kernel smoothing are developed. The method uses the expectation maximization approach to deal with the censored time origin. The Kaplan–Meier estimator and other failure time regression models such as the Cox model can be utilized to estimate the distribution and the conditional distribution of left censored event time related to the censored time origin. Asymptotic properties of the parametric and nonparametric estimators and consistent asymptotic variance estimators are derived. A two-stage estimation procedure for choosing weight is proposed to improve estimation efficiency. Numerical simulations are conducted to examine finite sample properties of the proposed estimators. The simulation results show that the theory and methods work well. The efficiency gain of the two-stage estimation procedure depends on the distribution of the longitudinal error processes. The method is applied to analyze data from the Merck 023/HVTN 502 Step HIV vaccine study.  相似文献   

12.
Let (T(1), T(2)) be gap times corresponding to two consecutive events, which are observed subject to random right-censoring. In this paper, a semiparametric estimator of the bivariate distribution function of (T(1), T(2)) and, more generally, of a functional E [φ(T(1),T(2))] is proposed. We assume that the probability of censoring for T(2) given the (possibly censored) gap times belongs to a parametric family of binary regression curves. We investigate the conditions under which the introduced estimator is consistent. We explore the finite sample behavior of the estimator and of its bootstrap standard error through simulations. The main conclusion of this paper is that the semiparametric estimator may be much more efficient than purely nonparametric methods. Real data illustration is included.  相似文献   

13.
Summary Given a large number of t‐statistics, we consider the problem of approximating the distribution of noncentrality parameters (NCPs) by a continuous density. This problem is closely related to the control of false discovery rates (FDR) in massive hypothesis testing applications, e.g., microarray gene expression analysis. Our methodology is similar to, but improves upon, the existing approach by Ruppert, Nettleton, and Hwang (2007, Biometrics, 63, 483–495). We provide parametric, nonparametric, and semiparametric estimators for the distribution of NCPs, as well as estimates of the FDR and local FDR. In the parametric situation, we assume that the NCPs follow a distribution that leads to an analytically available marginal distribution for the test statistics. In the nonparametric situation, we use convex combinations of basis density functions to estimate the density of the NCPs. A sequential quadratic programming procedure is developed to maximize the penalized likelihood. The smoothing parameter is selected with the approximate network information criterion. A semiparametric estimator is also developed to combine both parametric and nonparametric fits. Simulations show that, under a variety of situations, our density estimates are closer to the underlying truth and our FDR estimates are improved compared with alternative methods. Data‐based simulations and the analyses of two microarray datasets are used to evaluate the performance in realistic situations.  相似文献   

14.
Survival estimation using splines   总被引:1,自引:0,他引:1  
A nonparametric maximum likelihood procedure is given for estimating the survivor function from right-censored data. It approximates the hazard rate by a simple function such as a spline, with different approximations yielding different estimators. A special case is that proposed by Nelson (1969, Journal of Quality Technology 1, 27-52) and Altshuler (1970, Mathematical Biosciences 6, 1-11). The estimators are uniformly consistent and have the same asymptotic weak convergence properties as the Kaplan-Meier (1958, Journal of the American Statistical Association 53, 457-481) estimator. However, in small and in heavily censored samples, the simplest spline estimators have uniformly smaller mean squared error than do the Kaplan-Meier and Nelson-Altshuler estimators. The procedure is extended to estimate the baseline hazard rate and regression coefficients in the Cox (1972, Journal of the Royal Statistical Society, Series B 34, 187-220) proportional hazards model and is illustrated using experimental carcinogenesis data.  相似文献   

15.
Semiparametric analysis of correlated recurrent and terminal events   总被引:2,自引:0,他引:2  
In clinical and observational studies, recurrent event data (e.g., hospitalization) with a terminal event (e.g., death) are often encountered. In many instances, the terminal event is strongly correlated with the recurrent event process. In this article, we propose a semiparametric method to jointly model the recurrent and terminal event processes. The dependence is modeled by a shared gamma frailty that is included in both the recurrent event rate and terminal event hazard function. Marginal models are used to estimate the regression effects on the terminal and recurrent event processes, and a Poisson model is used to estimate the dispersion of the frailty variable. A sandwich estimator is used to achieve additional robustness. An analysis of hospitalization data for patients in the peritoneal dialysis study is presented to illustrate the proposed method.  相似文献   

16.
Schafer DW 《Biometrics》2001,57(1):53-61
This paper presents an EM algorithm for semiparametric likelihood analysis of linear, generalized linear, and nonlinear regression models with measurement errors in explanatory variables. A structural model is used in which probability distributions are specified for (a) the response and (b) the measurement error. A distribution is also assumed for the true explanatory variable but is left unspecified and is estimated by nonparametric maximum likelihood. For various types of extra information about the measurement error distribution, the proposed algorithm makes use of available routines that would be appropriate for likelihood analysis of (a) and (b) if the true x were available. Simulations suggest that the semiparametric maximum likelihood estimator retains a high degree of efficiency relative to the structural maximum likelihood estimator based on correct distributional assumptions and can outperform maximum likelihood based on an incorrect distributional assumption. The approach is illustrated on three examples with a variety of structures and types of extra information about the measurement error distribution.  相似文献   

17.
Xue  Liugen; Zhu  Lixing 《Biometrika》2007,94(4):921-937
A semiparametric regression model for longitudinal data is considered.The empirical likelihood method is used to estimate the regressioncoefficients and the baseline function, and to construct confidenceregions and intervals. It is proved that the maximum empiricallikelihood estimator of the regression coefficients achievesasymptotic efficiency and the estimator of the baseline functionattains asymptotic normality when a bias correction is made.Two calibrated empirical likelihood approaches to inferencefor the baseline function are developed. We propose a groupwiseempirical likelihood procedure to handle the inter-series dependencefor the longitudinal semiparametric regression model, and employbias correction to construct the empirical likelihood ratiofunctions for the parameters of interest. This leads us to provea nonparametric version of Wilks' theorem. Compared with methodsbased on normal approximations, the empirical likelihood doesnot require consistent estimators for the asymptotic varianceand bias. A simulation compares the empirical likelihood andnormal-based methods in terms of coverage accuracies and averageareas/lengths of confidence regions/intervals.  相似文献   

18.
Yue YR  Loh JM 《Biometrics》2011,67(3):937-946
In this work we propose a fully Bayesian semiparametric method to estimate the intensity of an inhomogeneous spatial point process. The basic idea is to first convert intensity estimation into a Poisson regression setting via binning data points on a regular grid, and then model the log intensity semiparametrically using an adaptive version of Gaussian Markov random fields to smooth the corresponding counts. The inference is carried by an efficient Markov chain Monte Carlo simulation algorithm. Compared to existing methods for intensity estimation, for example, parametric modeling and kernel smoothing, the proposed estimator not only provides inference regarding the dependence of the intensity function on possible covariates, but also uses information from the data to adaptively determine the amount of smoothing at the local level. The effectiveness of using our method is demonstrated through simulation studies and an application to a rainforest dataset.  相似文献   

19.
Gray RJ 《Biometrics》2000,56(2):571-576
An estimator of the regression parameters in a semiparametric transformed linear survival model is examined. This estimator consists of a single Newton-like update of the solution to a rank-based estimating equation from an initial consistent estimator. An automated penalized likelihood algorithm is proposed for estimating the optimal weight function for the estimating equations and the error hazard function that is needed in the variance estimator. In simulations, the estimated optimal weights are found to give reasonably efficient estimators of the regression parameters, and the variance estimators are found to perform well. The methodology is applied to an analysis of prognostic factors in non-Hodgkin's lymphoma.  相似文献   

20.
Noncrossing quantile regression curve estimation   总被引:4,自引:0,他引:4  
Bondell HD  Reich BJ  Wang H 《Biometrika》2010,97(4):825-838
Since quantile regression curves are estimated individually, the quantile curves can cross, leading to an invalid distribution for the response. A simple constrained version of quantile regression is proposed to avoid the crossing problem for both linear and nonparametric quantile curves. A simulation study and a reanalysis of tropical cyclone intensity data shows the usefulness of the procedure. Asymptotic properties of the estimator are equivalent to the typical approach under standard conditions, and the proposed estimator reduces to the classical one if there is no crossing. The performance of the constrained estimator has shown significant improvement by adding smoothing and stability across the quantile levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号