首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Development of an electrochemical DNA biosensor, using a gold electrode modified with a self-assembled monolayer composed of a peptide nucleic acid (PNA) probe and 6-mercapto-1-hexanol, is described. The sensor relies on covalent attachment of the14-mer PNA probe related to the hepatitis C virus genotype 3a (pHCV3a) core/E1 region on the electrode. Covalently self-assembled PNA could selectively hybridize with a complementary sequence in solution to form double-stranded PNA-DNA on the surface. The increase of peak current of methylene blue (MB), upon hybridization of the self-assembled probe with the target DNA in the solution, was observed and used to detect the target DNA sequence. Some hybridization experiments with noncomplementary oligonucleotides were carried out to assess whether the suggested DNA sensor responds selectively to the target. Diagnostic performance of the biosensor is described and the detection limit was found to be 5.7 × 10−11 M with a relative standard deviation of 1.4% in phosphate buffer solution, pH 7.0. This sensor exhibits high reproducibility and could be used for detection of the target DNA for seven times after the regeneration process.  相似文献   

2.
Li XM  Zhan ZM  Ju HQ  Zhang SS 《Oligonucleotides》2008,18(4):321-327
A novel label-free electrochemical DNA biosensor based on 4,4'-diaminoazobenzene (4,4'-DAAB) and multiwalled carbon nanotube (MWNT)-modified glassy carbon electrode (GCE) for short DNA sequences related to the hepatitis B virus (HBV) hybridization detection was presented. Differential pulse voltammetry (DPV) was used to investigate hybridization event. The decrease in the peak current of 4,4'-DAAB was observed on hybridization of probe with the target. This electrochemical approach was sequence specific as indicated by the control experiments, in which no peak current change was observed when a noncomplementary DNA sequence was used. Numerous factors affecting the target hybridization were optimized to maximize the sensitivity. Under optimal conditions, this sensor showed a good calibration range between 7.94 x 10(-8) M and 1.58 x 10(-6) M, with HBV DNA sequence detection limit of 1.1 x 10(-8) M.  相似文献   

3.
Disposable DNA electrochemical sensor for hybridization detection   总被引:3,自引:0,他引:3  
A disposable electrochemical sensor for the detection of short DNA sequences is described. Synthetic single-stranded oligonucleotides have been immobilized onto graphite screen printed electrodes with two procedures, the first involving the binding of avidinbiotinylated oligonucleotide and the second adsorption at a controlled potential. The probes were hybridized with different concentrations of complementary sequences. The formed hybrids on the electrode surface were evaluated by differential pulse voltammetry and chronopotentiometric stripping analysis using daunomycin hydrochloride as indicator of hybridization reaction. The probe immobilization step, the hybridization event and the indicator detection, have been optimized. The DNA sensor obtained by adsorption at a controlled potential was able to detect 1 microgram/ml of target sequence in the buffer solution using chronopotentiometric stripping analysis.  相似文献   

4.
In this study, an enzyme-amplified electrochemical biosensor was developed for detection of the promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) fusion gene in acute promyelocytic leukemia (APL). This new sensor employs a hairpin locked nucleic acids (LNAs) probe dually labeled with biotin and carboxyfluorescein molecule (FAM). The probe is immobilized at a streptavidin-modified electrode surface via the biotin-streptavidin bridge, and FAM serves as an affinity tag for the peroxidase conjugate binding. Initially, the immobilized hairpin probe was in the "closed" state in the absence of the target, which shielded FAM from being approached by the bulky anti-FAM-HRP conjugate due to the steric effect. Target binding opens the hairpin structure of the probe, the probe undergoes a significant conformational change, forcing FAM away from the electrode. As a result, the FAM label becomes accessible by the anti-FAM-HRP, and the target hybridization event can be sensitively transduced via the enzymatically amplified electrochemical current signal. This new biosensor demonstrates its excellent specificity for single-base mismatch and able to detect as little as 83 fM target DNA even in the presence of human serum. We also employed this sensor to directly detect PCR real sample with satisfactory results.  相似文献   

5.
For the detection of DNA hybridization, a new electrochemical biosensor was developed on the basis of the interaction of hematoxylin with 20-mer deoxyoligonucleotides (from human papilloma virus, HPV). The study was performed based on the interaction of hematoxylin with an alkanethiol DNA probe self-assembled gold electrode (ss-DNA/AuE) and its hybridization form (ds-DNA/AuE). The optimum conditions were found for the immobilization of HPV probe on the gold electrode (AuE) surface and its hybridization with the target DNA. Electrochemical detection of the self-assembled DNA and the hybridization process were performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the accumulated hematoxylin at the modified electrode was electroactive. Observing a remarkable difference between the voltammetric signals of the hematoxylin obtained from different hybridization samples (non-complementary, mismatch and complementary DNAs), we confirmed the potential of the developed biosensor in detecting and discriminating the target complementary DNA from non-complementary and mismatch oligonucleotides. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 12.5 nM to 350.0 nM, and the detection limit was 3.8 nM.  相似文献   

6.
In this paper, dendritic gold nanostructure (DenAu) modified electrode was obtained by direct electrodeposition of planar electrode into 2.8 mM HAuCl(4) and 0.1 M H(2)SO(4) solution under a very negative potential of -1.5 V. Scanning electron microscopy was used to characterize the growth evolution of DenAu with time. The whole DNA biosensor fabrication process based on the DenAu modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy methods with the use of ferricyanide as an electrochemical redox indicator. The probe DNA immobilization and hybridization with target DNA on the modified electrode could be well distinguished by using methylene blue as an electrochemical hybridization indicator. The DenAu modified electrode could realize an ultra sensitivity of 1 fM toward complementary target DNA and a very wide dynamic detection range (from 1 fM to 1 nM).  相似文献   

7.
An electrochemical DNA sensor based on the hybridization recognition of a single-stranded DNA (ssDNA) probe immobilized onto a gold electrode to its complementary ssDNA is presented. The DNA probe is bound on gold surface electrode by using self-assembled monolayer (SAM) technology. An optimized mixed SAM with a blocking molecule preventing the nonspecific adsorption on the electrode surface has been prepared. In this paper, a DNA biosensor is designed by means of the immobilization of a single stranded DNA probe on an electrochemical transducer surface to recognize specifically Escherichia coli (E. coli) 0157:H7 complementary target DNA sequence via cyclic voltammetry experiments. The 21 mer DNA probe including a C6 alkanethiol group at the 5' phosphate end has been synthesized to form the SAM onto the gold surface through the gold sulfur bond. The goal of this paper has been to design, characterise and optimise an electrochemical DNA sensor. In order to investigate the oligonucleotide probe immobilization and the hybridization detection, experiments with different concentration of DNA and mismatch sequences have been performed. This microdevice has demonstrated the suitability of oligonucleotide Self-assembled monolayers (SAMs) on gold as immobilization method. The DNA probes deposited on gold surface have been functional and able to detect changes in bases sequence in a 21-mer oligonucleotide.  相似文献   

8.
Kang J  Li X  Wu G  Wang Z  Lu X 《Analytical biochemistry》2007,364(2):165-170
DNA hybridization on the Au(nano)-DNA modified glassy carbon electrode (GCE) was investigated. The thiol modified probe oligonucleotides (SH-ssDNA) at the 5' phosphate end were assembled on the Au(nano)-DNA modified GCE surface. The electrochemical response of the probe immobilization and hybridization with target DNA was measured by differential pulse voltammetry (DPV) using methylene blue (MB) as the electroactive indicator. Gold nanoparticles can be dispersed effectively on the GCE surface in the presence of calf thymus DNA. Au(nano)-DNA modified GCE could greatly increase the active sites and enhance the response signal during immobilization and hybridization. The hybridization amount of target DNA could be greatly increased. The linear detection range of Au(nano)-DNA electrode for the complementary 21-mer oligonucleotide (cDNA) was achieved from 1.52 x 10(-10) to 4.05 x 10(-8) mol L(-1). The detection limit could reach the concentration of 10(-10) mol/L.  相似文献   

9.
A direct electrochemical DNA biosensor based on zero current potentiometry was fabricated by immobilization of ssDNA onto gold nanoparticles (AuNPs) coated pencil graphite electrode (PGE). One ssDNA/AuNPs/PGE was connected in series between clips of working and counter electrodes of a potentiostat, and then immersed into the solution together with a reference electrode, establishing a novel DNA biosensor for specific DNA detection. The variation of zero current potential difference (ΔE(zcp)) before and after hybridization of the self-assembled probe DNA with the target DNA was used as a signal to characterize and quantify the target DNA sequence. The whole DNA biosensor fabrication process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy with the use of ferricyanide as an electrochemical redox indicator. Under the optimized conditions, ΔE(zcp) was linear with the concentrations of the complementary target DNA in the range from 10nM to 1μM, with a detection limit of 6.9nM. The DNA biosensor showed a good reproducibility and selectivity. Prepared DNA biosensor is facile and sensitive, and it eliminates the need of using exogenous reagents to monitor the oligonucleotides hybridization.  相似文献   

10.
Lead sulfide (PbS) nanoparticles were synthesized in aqueous solution and used as oligonucleotide labels for electrochemical detection of the 35 S promoter from cauliflower mosaic virus (CaMV) sequence. The PbS nanoparticles were modified with mercaptoacetic acid and could easily be linked with CaMV 35 S oligonucleotide probe. Target DNA sequences were covalently linked on a mercaptoacetic acid self-assembled gold electrode, and DNA hybridization of target DNA with probe DNA was completed on the electrode surface. PbS nanoparticles anchored on the hybrids were dissolved in the solution by oxidation of HNO3 and detected using a sensitive differential pulse anodic stripping voltammetric method. The detection results can be used to monitor the hybridization reaction. The CaMV 35 S target sequence was satisfactorily detected with the detection limit as 4.38 × 10−12 mol/L (3σ). The established method extends nanoparticle-labeled electrochemical DNA analysis to specific sequences from genetically modified organisms with higher sensitivity and selectivity.  相似文献   

11.
Jin Y  Yao X  Liu Q  Li J 《Biosensors & bioelectronics》2007,22(6):1126-1130
In this paper, a label-free, rapid and simple method was proposed to study the hybridization specificity of hairpin DNA probe using methylene blue (MB) as a hybridization indicator. Thiolated hairpin DNA probe was immobilized on the gold electrode by self-assembly. The voltammetric signals of MB were investigated at these modified electrodes by means of cyclic voltammetry (CV) detection. Single-base mutation oligonucleotide and random oligonucleotide can be easily discriminated from complementary target DNA. The effect of mismatch position in target DNA was investigated. Experimental results showed that mutation in the center of target DNA had greatest effect on the hybridization with hairpin DNA probe. The relationship between electrochemical responses and DNA target concentration was also studied. The reduction current of MB intercalation decreased with increasing the concentration of target DNA. Taken together, these experiments demonstrate that the hybridization indicator MB provides great promise for rapid and specific measurement of target DNA.  相似文献   

12.
A novel hybridization indicator, bis(benzimidazole)cadmium(II) dinitrate (Cd(bzim)(2)(NO(3))(2)), was utilized to develop an electrochemical DNA biosensor for the detection of a short DNA sequence related to the hepatitis B virus (HBV). The sensor relies on the immobilization and hybridization of the 21-mer single-stranded oligonucleotide from the HBV long repeat at the glassy carbon electrode (GCE). The hybridization between the probe and its complementary sequence as the target was studied by enhancement of the peak of the Cd(bzim)(2)(2+) indicator using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Numerous factors affecting the probe immobilization, target hybridization, and indicator binding reactions were optimized to maximize the sensitivity and speed of the assay time. With this approach, a sequence of the HBV could be quantified over the range from 1.49x10(-7)M to 1.06x10(-6)M, with a linear correlation of r=0.9973 and a detection limit of 8.4x10(-8)M. The Cd(bzim)(2)(2+) signal observed from the probe sequence before and after hybridization with a four-base mismatch containing sequence was lower than that observed after hybridization with a complementary sequence, showing good selectivity. These results demonstrate that the Cd(bzim)(2)(2+) indicator provides great promise for the rapid and specific measurement of the target DNA.  相似文献   

13.
In this study, a novel DNA electrochemical probe (locked nucleic acid, LNA) was designed and involved in constructing an electrochemical DNA biosensor for detection of promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) fusion gene in acute promyelocytic leukemia for the first time. This biosensor was based on a 'sandwich' sensing mode, which involved a pair of LNA probes (capture probe immobilized at electrode surface and biotinyl reporter probe as an affinity tag for streptavidin-horseradish peroxidase (streptavidin-HRP). Since biotin can be connected with streptavidin-HRP, this biosensor offered an enzymatically amplified electrochemical current signal for the detection of target DNA. In the simple hybridization system, DNA fragment with its complementary DNA fragment was evidenced by amperometric detection, with a detection limit of 74 fM and a linear response range of 0.1-10 pM for synthetic PML/RARα fusion gene in acute promyelocytic leukemia (APL). Otherwise, the biosensor showed an excellent specificity to distinguish the complementary sequence and different mismatch sequences. The new pattern also exhibited high sensitivity and selectivity in mixed hybridization system.  相似文献   

14.
Cai H  Zhu N  Jiang Y  He P  Fang Y 《Biosensors & bioelectronics》2003,18(11):1311-1319
Synthesis of the novel Cu@Au alloy nanoparticle and its application in an electrochemical DNA hybridization detection assay is described in this article. We report a low-temperature method for generating core-shell particles consisting of a core of Cu and a thin layer of Au shell that can be readily functionalized with oligonucleotides. Core-shell Cu@Au particles were successfully labeled to a 5'-alkanethiol capped oligonucleotides probe that is related to the colitoxin gene. The DNA genetic sensing assay relies on the electrostatic adsorption of target oligonucleotides onto conducting polypyrrole (PPy) surface at the glassy carbon electrode (GCE), and its hybridization to the alloy particle-oligonucleotides DNA probe. Hybridization events between probe and target were monitored by the release of the copper metal atoms anchored on the hybrids by oxidative metal dissolution and the indirectly determination of the solubilized Cu2+ ions by sensitive anodic stripping voltammetry (ASV). The detection limit is 5.0 pmol l(-1) of target oligonucleotides. The Cu@Au core-shell nanoparticles combining the surface modification properties of Au with the good electrochemical activity of Cu core shows their perspective application in the electrochemical DNA hybridization analysis assay.  相似文献   

15.
This work develops a simple, sensitive and signal-on electrochemical sensor for methyltransferase (MTase) activity analysis. The sensor is composed of a methylene blue-modi?ed "signaling DNA probe" and a "capture DNA probe" tethered methylation-responsive hairpin DNA (hairpin-capture DNA probe). The thiol- modified hairpin-capture DNA probe at 5' end was firstly self-assembled on gold electrode via Au-S bonding. Methylation-induced scission of hairpin-capture DNA probe would displace the hairpin section and remain the "capture DNA probe" section on the gold electrode. Subsequently, the remained "capture DNA probe" on the gold electrode can hybridize with the methylene blue-modi?ed "signaling DNA probe", mediating methylene blue onto the gold electrode surface to generate redox current. It was eT on state. The developed facile signal-on electrochemical sensing system showed a linear response to concentration of Dam MTase range from 0.1 to 1.0 U/mL. The detection limit of Dam MTase activity was determined to be 0.07 U/mL and the total detection time is 7h. The sensor also has the ability to provide information about the dynamics of methylation process. Furthermore, we demonstrated that this sensor could be utilized to screen inhibitors or drugs for Dam MTase.  相似文献   

16.
We have designed a simple and novel electrochemical biosensor based on glassy carbon electrode (GCE) for DNA detection. GCE was modified with reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) by the electrochemical method, which is helpful for immobilization of thiolated bioreceptors. The electrode modification processes were characterized by scanning electron microscopy (SEM) and electrochemical methods. Then a single-stranded DNA (ssDNA) probe for BRCA1 5382 insC mutation detection was immobilized on the modified electrode for a specific time. The experimental conditions, such as probe immobilization time and target DNA (complementary DNA) hybridization time and temperature with probe DNA, were optimized using electrochemical methods. The electrochemical response for DNA hybridization and synthesis was measured using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. The calibration graph contains two linear ranges; the first part is in the range of 3.0 × 10−20 to 1.0 × 10−12 M, and the second segment part is in the range of 1.0 × 10−12 to 1.0 × 10−7 M. The biosensor showed excellent selectivity for the detection of the complementary sequences from noncomplementary sequences, so it can be used for detection of breast cancer.  相似文献   

17.
A disposable electrochemical biosensor for the detection of DNA sequences related to the human cytomegalovirus (HCMV) is described. The sensor relies on the adsorption of an amplified human cytomegalovirus DNA strand onto the sensing surface of a screen-printed carbon electrode, and to its hybridization to a complementary single-stranded biotinylated DNA probe. The extent of hybrids formed was determined with streptavidin conjugated to horseradish peroxidase. The peroxidase label was indirectly quantified by measuring the amount of the chromophore and electroactive product 2,2'-diaminoazobenzene generated from the o-phenylenediamine substrate. The intensity of differential pulse voltammetric peak currents resulting from the reduction of the enzyme-generated product was related to the number of target HCMV-amplified DNA molecules present in the sample, and the results were compared to those obtained with standard methods, i.e., agarose gel electrophoresis quantification and colorimetric hybridization assay in a microtiter plate. A detection limit of 0.6 amol/ml of HCMV-amplified DNA fragment was obtained with the electrochemical DNA biosensor. The electrochemical method was 23,000-fold more sensitive than the gel electrophoresis technique and 83-fold more sensitive than the colorimetric hybridization assay in a microtiter plate.  相似文献   

18.
A simple and feasible electrochemical sensing protocol was developed for the detection of bisphenol A (BPA) by employing the gold nanoparticles (AuNPs), prussian blue (PB) and functionalized carbon nanotubes (AuNPs/PB/CNTs-COOH). An aminated complementary DNA as a capture probe and specific aptamer against BPA as a detection probe was immobilized on the surface of a modified glassy carbon (GC) electrode via the formation of covalent amide bond and hybridization, respectively. The proposed nanoaptasensor combined the advantages of the in situ formation of PB as a label, the deposition of neatly arranged AuNPs, and the covalent attachment of the capture probe to the surface of the modified electrode. Upon addition of target BPA, the analyte reacted with the aptamer and caused the steric/conformational restrictions on the sensing interface. The formation of BPA–aptamer complex at the electrode surface retarded the interfacial electron transfer reaction of the PB as a probe. Sensitive quantitative detection of BPA was carried out based on the variation of electron transfer resistance which relevant to the formation of BPA– aptamer complex at the modified electrode surface. Under the optimized conditions, the proposed aptasensor exhibited a high sensitivity, wide linearity to BPA and low detection limit. This aptasensor also displayed a satisfying electrochemical performance with good stability, selectivity and reproducibility.  相似文献   

19.
Xia Q  Chen X  Liu JH 《Biophysical chemistry》2008,136(2-3):101-107
A novel DNA hybridization sensor based on nanoparticle CdS modified glass carbon electrode (GCE) was constructed and characterized coupled with Cyclic Voltammogram (CV) and Differential Pulse Voltammogram (DPV) techniques. The mercapto group-linked probe DNA was covalently immobilized onto the CdS layer and exposed to oligonucleotide (ODN) target for hybridization. The structure of DNA sensor was characterized by X-ray diffraction (XRD), field-emission microscopy (FESEM) and X-ray photoelectron spectra (XPS). Sensitive electrical readout achieved by CV and DPV techniques shown that when the target DNA hybridized with probe CdS-ODN conjugates and the double helix formed on the modified electrode, a significant increased response was observed comparing with the bare electrodes. The selectivity of the sensor was tested using a series of matched and certain-point mismatched sequences with concentration grads ranging from 10(-6) microM to 10(1) microM. The signal was in good linear with the minus logarithm of target oligonucleotide concentration with detection limit <1 pM and the optimized target DNA concentration was 10(-6) microM for the signal amplification. Due to great surface properties, the additional negative charges and space resistance of as-prepared CdS nanoparticles, the sensor was able to robustly discriminate the DNA hybridization responses with good sensitivity and stability.  相似文献   

20.
Zhang J  Song S  Wang L  Pan D  Fan C 《Nature protocols》2007,2(11):2888-2895
We report a protocol for the amplified detection of target DNA by using a chronocoulometric DNA sensor (CDS). Electrochemistry is known to be rapid, sensitive and cost-effective; it thus offers a promising approach for DNA detection. Our CDS protocol is based on a 'sandwich' detection strategy, involving a capture probe DNA immobilized on a gold electrode and a reporter probe DNA loaded on gold nanoparticles (AuNPs). Each probe flanks one of two fragments of the target sequence. A single DNA hybridization event brings AuNPs, along with hundreds of reporter probes, in the proximity of the electrode. We then employ chronocoulometry to interrogate [Ru(NH3)6]3+ electrostatically bound to the captured DNA strands. This AuNP-amplified DNA sensor can selectively detect as low as femtomolar (zeptomoles) concentrations of DNA targets and conveniently analyze a breast cancer-associated BRCA-1 mutant DNA. The time range for the entire protocol is approximately 3 d, whereas the DNA sensing takes less than 2 h to complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号