首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G1 phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G1 restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3′-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function.Conditionally replicating adenoviruses are a novel class of biological agents used to treat cancer (57). The E1B-55K deletion mutant virus ONYX-015, originally known as dl1520 (4), is one of the first of such agents (7). H101 is another E1B-55K deletion mutant adenovirus that is being used for tumor therapy in China (30, 78). We previously reported that cells infected during the G1 phase of the cell cycle with E1B-55K deletion mutant adenoviruses exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less effectively killed than cells infected during S phase (34, 35, 66). These observations indicated that the E1B-55K deletion mutant virus ONYX-015 is restricted in cells infected in G1. This restriction is significant because a large fraction of cells within a tumor exist in the G1 phase of the cell cycle (71). Here we show that the G1 restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1).The E4orf1-encoded protein is a small adapter molecule that associates with PDZ domain-containing proteins including MUPP1, PATJ, MAGI-1, ZO-2, and Dlg1 (46). PDZ domain-containing proteins often serve as scaffolds for the assembly of signaling complexes at the plasma membrane (64). Through its association with PDZ domain-containing proteins, the E4orf1-encoded protein promotes signaling through the phosphatidylinositol 3′-kinase (PI3-kinase) pathway to effectors such as protein kinase B (Akt), the mammalian target of rapamycin (mTOR), and the S6 ribosomal protein kinase (p70 S6K) (27, 54). Through these effectors, PI3-kinase alters protein synthesis and cell survival (21, 28). E4orf1 is the principal oncogenic determinant of species D adenovirus type 9 (42). The transforming ability of E4orf1 can be blocked by the PI3-kinase inhibitor LY249002 (27). However, phosphorylation of p70 S6K can also proceed by pathways that are independent of PI3-kinase or Akt. For example, the Rho-like GTPase Rac1 can activate p70 S6K (17). Rac1 is itself regulated by cellular factors to which it binds, including the Rac1-specific guanine nucleotide exchange factor T-cell lymphoma invasion and metastasis 1 protein (Tiam1). Tiam1 and the neural tissue-associated F-actin-binding protein neurabin II or spinophilin recruit p70 S6K into a complex containing Rac1, resulting in increased phosphorylation of p70 S6K (12, 36, 50). Interestingly, both Tiam1 and neurabin II are PDZ-containing proteins. These observations provided a potential basis by which E4orf1 may modulate protein synthesis and cell survival.In this report, we show for the first time that E4orf1 restricts the abilities of the E1B-55K deletion mutant virus to produce viral progeny, to direct viral late protein synthesis, and to kill tumor cells. Drugs that are reported to prevent phosphorylation of p70 S6K or to disrupt the interaction between Tiam1 and Rac1 increase the cell-killing ability of the E1B-55K deletion mutant virus to nearly the same level observed for an E1B-55K/E4orf1 double mutant and the wild-type virus. By uncovering a role for E4orf1 in the course of a lytic adenovirus infection, this study presents novel genetic and pharmacological means by which the effectiveness of replicating oncolytic adenoviruses can be improved.  相似文献   

2.
3.
4.
Comment on: Barber CL, et al. Proc Natl Acad Sci USA 2011; In press.  相似文献   

5.
6.
The E1B-55K protein plays an important role during human adenovirus type 5 productive infection. In the early phase of the viral infection, E1B-55K binds to and inactivates the tumor suppressor protein p53, allowing efficient replication of the virus. During the late phase of infection, E1B-55K is required for efficient nucleocytoplasmic transport and translation of late viral mRNAs, as well as for host cell shutoff. In an effort to separate the p53 binding and inactivation function and the late functions of the E1B-55K protein, we have generated 26 single-amino-acid mutations in the E1B-55K protein. These mutants were characterized for their ability to modulate the p53 level, interact with the E4orf6 protein, mediate viral late-gene expression, and support virus replication in human cancer cells. Of the 26 mutants, 24 can mediate p53 degradation as efficiently as the wild-type protein. Two mutants, R240A (ONYX-051) and H260A (ONYX-053), failed to degrade p53 in the infected cells. In vitro binding assays indicated that R240A and H260A bound p53 poorly compared to the wild-type protein. When interaction with another viral protein, E4orf6, was examined, H260A significantly lost its ability to bind E4orf6, while R240A was fully functional in this interaction. Another mutant, T255A, lost the ability to bind E4orf6, but unexpectedly, viral late-gene expression was not affected. This raised the possibility that the interaction between E1B-55K and E4orf6 was not required for efficient viral mRNA transport. Both R240A and H260A have retained, at least partially, the late functions of wild-type E1B-55K, as determined by the expression of viral late proteins, host cell shutoff, and lack of a cold-sensitive phenotype. Virus expressing R240A (ONYX-051) replicated very efficiently in human cancer cells, while virus expressing H260A (ONYX-053) was attenuated compared to wild-type virus dl309 but was more active than ONYX-015. The ability to separate the p53-inactivation activity and the late functions of E1B-55K raises the possibility of generating adenovirus variants that retain the tumor selectivity of ONYX-015 but can replicate more efficiently than ONYX-015 in a broad spectrum of cell types.  相似文献   

7.
The adenovirus type 5 mutant dl1520 was engineered previously to be completely defective for E1B-55K functions. Recently, this mutant (also known as ONYX-015) has been suggested to replicate preferentially in p53(-) and some p53(+) tumor cell lines but to be attenuated in primary cultured cells (C. Heise, A. Sampson-Johannes, A. Williams, F. McCormick, D. D. F. Hoff, and D. H. Kirn, Nat. Med. 3:639-645, 1997). It has been suggested that dl1520 might be used as a "magic bullet" that could selectively lyse tumor cells without harm to normal tissues. However, we report here that dl1520 replication is independent of p53 genotype and occurs efficiently in some primary cultured human cells, indicating that the mutant virus does not possess a tumor selectivity. Although it was not the sole host range determinant, p53 function did reduce dl1520 replication when analyzed in a cell line expressing temperature-sensitive p53 (H1299-tsp53) (K. L. Fries, W. E. Miller, and N. Raab-Traub, J. Virol. 70:8653-8659, 1996). As found earlier for other E1B-55K mutants in HeLa cells (Y. Ho, R. Galos, and J. Williams, Virology 122:109-124, 1982), dl1520 replication was temperature dependent in H1299 cells. When p53 function was restored at low temperature in H1299-tsp53 cells, it imposed a modest defect in viral DNA replication and accumulation of late viral cytoplasmic mRNA. However, in both H1299 and H1299-tsp53 cells, the defect in late viral protein synthesis appeared to be much greater than could be accounted for by the modest defects in late viral mRNA levels. We therefore propose that in addition to countering p53 function and modulating viral and cellular mRNA nuclear transport, E1B-55K also stimulates late viral mRNA translation.  相似文献   

8.
9.
10.
The size of B-cell subsets appears to be under genetic control, but the mechanism of this regulation is unknown. By analyzing five congenic strains of mice that differ only in their H2 haplotype, we addressed the issue of whether the MHC genes are involved in the relative proportions of B-1a, B-1b and B-2 cells. Not only were there considerable differences in the percentages of B-1 in B cells between H2s mice which were the highest [78.5+/-0.8% in the peritoneal cavity (PerC), and 26.3+/-0.5% in the spleen] and H2d mice, which were the lowest (15.2+/-0.6% in the PerC, and 10.9+/-0.6% in the spleen), but the percentages of B-1a cells varied inversely to those of B-1. Crosses between H2s and H2d strains showed that the highest B-1 frequencies occurred in F2 progeny expressing the homozygous H2s (70.8+/-2.1% in the PerC, and 30.0+/-0.5 in the spleen), and the lowest in that expressing the homozygous H2d haplotype (8.9+/-0.6% in the PerC, and 8.6+/-0.4% in the spleen). A dose effect of H2 was established in heterozygous F1 and F2 mice. As mice aged, there was a reduction of B-1 cells in the PerC, at the expense of B-1b in the H2s, but not in the H2d mice. Hence, the H2 genes appear to participate in regulating the proportions of B-1a, B-1b and B-2 cells.  相似文献   

11.
细胞凋亡是动物细胞大规模培养中影响活细胞密度和目的产品质量的重要因素,过表达抗凋亡基因是目前常用的提高工程细胞凋亡抗性的一种策略。拟在HEK293细胞中过表达腺病毒E1B-19K基因,挑取了不同E1B-19K表达水平的单克隆细胞,考察在不同培养条件下细胞的凋亡水平和代谢情况。E1B-19K的过表达可显著增强细胞在低葡萄糖、低血清和无谷氨酰胺3种培养条件下的抗凋亡能力,使凋亡细胞比例降低60%~80%;E1B-19K的过表达可使批次培养HEK293细胞的衰退期延迟2天,而对细胞的葡萄糖、乳酸和谷氨酰胺等的代谢无显著影响。结果表明,过表达E1B-19K是一种有效减缓HEK293细胞在培养过程中凋亡的策略。  相似文献   

12.
Mucosal IgA is the most abundantly produced Ig upon colonization of the intestinal tract with commensal organisms in the majority of mammals. The repertoire of these IgA molecules is still largely unknown; a large amount of the mucosal IgA cannot be shown to react with the inducing microorganisms. Analysis of the repertoire of used H chain Ig (V(H)) genes by H-CDR3 spectrotyping, cloning, and sequencing of V(H) genes from murine intestinal IgA-producing plasma cells reveals a very restricted usage of V(H) genes and multiple clonally related sequences. The restricted usage of V(H) genes is a very consistent observation, and is observed for IgA plasma cells derived from B-1 or conventional B-2 cells from different mouse strains. Clonal patterns from all analyzed V(H) gene sequences show mainly independently acquired somatic mutations in contrast to the clonal evolution patterns often observed as a consequence of affinity maturation in germinal center reactions in peripheral lymphoid organs and Peyer's patches. Our data suggest a model of clonal expansion in which many mucosal IgA-producing B cells develop in the absence of affinity maturation. The affinity of most produced IgA might not be the most critical factor for its possible function to control the commensal organisms, but simply the abundance of large amounts of IgA that can bind with relatively unselected affinity to redundant epitopes on such organisms.  相似文献   

13.
14.
15.
Mode of Action of Colicins of Types E1, E2, E3, and K   总被引:5,自引:2,他引:3       下载免费PDF全文
The effect of colicins on deoxyribonucleic acid and protein synthesis, and also their effect on the ability of T4 phage to replicate in Escherichia coli K-12, were studied. Colicins of type K inhibited deoxyribonucleic acid synthesis, protein synthesis, and phage growth. Among colicins of type E, there was an absolute correlation between mode of action and subdivision into types E(1), E(2), and E(3).  相似文献   

16.
17.
Lymphoid cells expressing sufficient levels of Bcl-2 or E1B-19K are known to resist to induction of apoptosis in glutamine-free or nutrient-limited batch cultures. However, despite the increased viability and prolonged stationary phase achieved in batch culture, product yields are not necessarily improved. Here we have found that expression of E1B-19K in NS/0 myeloma cells cultivated in the presence of certain cell cycle modulators could result in a significant increase in MAb productivity as compared to untransfected control cells. The use of E1B-19K significantly enhanced cell survival in the presence of osmolytes (sorbitol, NaCl), DNA synthesis inhibitors (hydroxyurea, excess thymidine), and the cell culture additive OptiMAb™. E1B-19K myelomas cultivated in the presence of NaCl or OptiMAb™ accumulated in the G1 phase, while those arrested with excess thymidine were blocked in all phases. Interestingly, control NS/0 cells treated with these agents were found to die in a cell-cycle specific manner. Thus, while all G1 and most S phase cells quickly underwent apoptosis, G2/M cells remained alive and maintained MAb secretion for more than 10 days if supplied with adequate nutrients. For both control and E1B-19K cells, incubation with sorbitol or hydroxyurea was detrimental for MAb secretion, while addition of NaCl, excess thymidine and OptiMAb™ resulted in an increased specific MAb productivity as compared to the batch culture. However, this increase resulted in an improvement of final MAb yields only in the case of OptiMAb™. The extension of viability conferred by E1B-19K allowed to further improve the final MAb yield obtained using OptiMAb™ with a 3.3-fold increase for E1B-19K cells as compared to 1.8-fold for control NS/0 cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Annular lipid-protein stoichiometry in native pig kidney Na+/K+ -ATPase preparation was studied by [125I]TID-PC/16 labeling. Our data indicate that the transmembrane domain of the Na+/K+ -ATPase in the E1 state is less exposed to the lipids than in E2, i.e., the conformational transitions are accompanied by changes in the number of annular lipids but not in the affinity of these lipids for the protein. The lipid-protein stoichiometry was 23 ± 2 (α subunit) and 5.0 ± 0.4 (β subunit) in the E1 conformation and 32 ± 2 (α subunit) and 7 ± 1 (β subunit) in the E2 conformation.  相似文献   

19.
20.
CD22 is a B cell-restricted transmembrane protein that apparently controls signal transduction thresholds initiated through the B cell Ag receptor (BCR) in response to Ag. However, it is still poorly understood how the expression of CD22 is regulated in B cells after their activation. Here we show that the expression levels of CD22 in conventional B-2 cells are markedly down-regulated after cross-linking of BCR with anti-IgM mAb but are up-regulated after stimulation with LPS, anti-CD40 mAb, or IL-4. In contrast, treatment with anti-IgM mAb barely modulated the expression levels of CD22 in CD5(+) B-1 cells, consistent with a weak Ca(2+) response in anti-IgM-treated CD5(+) B-1 cells. Moreover, in CD22-deficient mice, anti-IgM treatment did not trigger enhanced Ca(2+) influx in CD5(+) B-1 cells, unlike CD22-deficient splenic B-2 cells, suggesting a relatively limited role of CD22 in BCR signaling in B-1 cells. In contrast, CD22 levels were markedly down-regulated on wild-type B-1 cells in response to LPS or unmethylated CpG-containing oligodeoxynucleotides. These data indicate that the expression and function of CD22 are differentially regulated in B-1 and conventional B-2 cells, which are apparently implicated in innate and adaptive immunity, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号