首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-Amidinoproline, a hybrid structure modeling key features of the Arg-Pro sequence, was synthesized. The activation of carboxyl group of free N-amidinoproline was found to result in the formation of a cyclic side product, whose structure was confirmed by ESI MS, 1H NMR, and 13C NMR spectra. The preparation of N-(mesitylenesulfonylamidino)-L-proline using the mesitylenesulfonyl derivative of 2-methylisourea was demonstrated to be accompanied by partial racemization. The target product was synthesized by modification of N-amidinoproline by mesitylenesulfonyl chloride. The possibility of using N-amidinoproline in the N-terminal modification of a peptide chain was shown by the example of synthesis of an analogue of the 95-98 fragment of fibrinogen alpha chain.  相似文献   

2.
NG-Monoethyl-l-arginine, a putative in vivo product after administration of the potent hepatocarcinogen l-ethionine to rats, has been chemically synthesized by coupling N-ethyl, S-methylthiopseudouronium iodide with α-amino-blocked l-ornithine. The structure of the compound as NG-monoethyl-l-arginine was confirmed by 13C NMR. Its elution time on an automatic amino acid analyzer, Rf values using thin-layer chromatography, and isoelectric point have been compared with those of NG-monomethyl-l-arginine.  相似文献   

3.
A N-trifluoroacetyl-protected amino acid containing a thioester function, 2,2,2-trifluoro-N-(2-oxo-tetrahydrothiophen-3-yl)acetamide (TFA-tHcy), has been synthesized and characterized. It was then used to prepare a fluorine-labeled N-homocysteinylated protein, 19F-Hcy-εN-Lys-albumin, that was characterized by SDS-PAGE, MALDI-TOF-MS, UV-vis and 19F NMR spectroscopy. On average, four N-trifluoroacetylhomocysteine residues were covalently conjugated to human serum albumin through the N-substituted homocysteine thiolactone. The in situ homocysteinylation of human plasma proteins with TFA-tHcy has also been performed and has led to the formation of N-homocysteinylated proteins, with albumin modification accounting for ca. 75% of all fluorine-labeled human plasma proteins. The synthesized fluorinated molecular probes can be potentially used as informative molecular probes for in vivo 19F magnetic resonance spectroscopy and imaging.  相似文献   

4.
Nuclear magnetic resonance (NMR) spectroscopy is a proven technique for protein structure and dynamic studies. To study proteins with NMR, stable magnetic isotopes are typically incorporated metabolically to improve the sensitivity and allow for sequential resonance assignment. Reductive 13C-methylation is an alternative labeling method for proteins that are not amenable to bacterial host over-expression, the most common method of isotope incorporation. Reductive 13C-methylation is a chemical reaction performed under mild conditions that modifies a protein''s primary amino groups (lysine ε-amino groups and the N-terminal α-amino group) to 13C-dimethylamino groups. The structure and function of most proteins are not altered by the modification, making it a viable alternative to metabolic labeling. Because reductive 13C-methylation adds sparse, isotopic labels, traditional methods of assigning the NMR signals are not applicable. An alternative assignment method using mass spectrometry (MS) to aid in the assignment of protein 13C-dimethylamine NMR signals has been developed. The method relies on partial and different amounts of 13C-labeling at each primary amino group. One limitation of the method arises when the protein''s N-terminal residue is a lysine because the α- and ε-dimethylamino groups of Lys1 cannot be individually measured with MS. To circumvent this limitation, two methods are described to identify the NMR resonance of the 13C-dimethylamines associated with both the N-terminal α-amine and the side chain ε-amine. The NMR signals of the N-terminal α-dimethylamine and the side chain ε-dimethylamine of hen egg white lysozyme, Lys1, are identified in 1H-13C heteronuclear single-quantum coherence spectra.  相似文献   

5.
(+)-N6-Hydroxyagelasine D, the enantiomer of the proposed structure of (?)-ageloxime D, as well as N6-hydroxyagelasine analogs were synthesized by selective N-7 alkylation of N6-[tert-butyl(dimethyl)silyloxy]-9-methyl-9H-purin-6-amine in order to install the terpenoid side chain, followed by fluoride mediated removal of the TBDMS-protecting group. N6-Hydroxyagelasine D and the analog carrying a geranylgeranyl side chain displayed profound antimicrobial activities against several pathogenic bacteria and protozoa and inhibited bacterial biofilm formation. However these compounds were also toxic towards mammalian fibroblast cells (MRC-5). The spectral data of N6-hydroxyagelasine D did not match those reported for ageloxime D before. Hence, a revised structure of ageloxime D was proposed. Basic hydrolysis of agelasine D gave (+)-N-[4-amino-6-(methylamino)pyrimidin-5-yl]-N-copalylformamide, a compound with spectral data in full agreement with those reported for (?)-ageloxime D.  相似文献   

6.
The aim of the present study is to determine the chemical structure and conformation of DNA adducts formed by incubation of the bioactive form of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), N-acetoxy-PhIP, with a single-stranded 11mer oligodeoxyribonucleotide. Using conditions optimized to give the C8-dG-PhIP adduct as the major product, sufficient material was synthesized for NMR solution structure determination. The NMR data indicate that in duplex DNA this adduct exists in equilibrium between two different conformational states. In the main conformer, the covalently bound PhIP molecule intercalates in the helix, whilst in the minor conformation the PhIP ligand is probably solvent exposed. In addition to the C8-dG-PhIP adduct, at least eight polar adducts are found after reaction of N-acetoxy-PhIP with the oligonucleotide. Three of these were purified for further characterization and shown to exhibit lowest energy UV absorption bands in the range 342–347 nm, confirming the presence of PhIP or PhIP derivative. Accurate mass determination of two of the polar adducts by negative ion MALDI-TOF MS revealed ions consistent with a spirobisguanidino-PhIP derivative and a ring-opened adduct. The third adduct, which has the same mass as the C8-dG-PhIP oligonucleotide adduct, may contain PhIP bound to the N2 position of guanine.  相似文献   

7.
Finasteride is a synthetic 4-azasteroid compound that acts by inhibiting type II 5α-reductase, the enzyme that converts the androgen testosterone to 5α-dihydrotestosterone. It was approved by the US FDA for the treatment of benign prostatic hyperplasia and male pattern baldness. Here the acylation product of Finasteride C-18 amide N-polimod was synthesized by employing acylation reaction with polimod amide as a pivotal intermediate. The structure of the key intermediate and target molecule was confirmed by infrared spectrum, 1H NMR and 13C NMR spectra and mass spectrum, and the inhibition of the steroid 5α-reductase and the rats’ benign prostatic hyperplasia by the new Finasteride conjugate and Finasteride was also determined. The inhibition of the Finasteride conjugate on 5α-reductase was stronger than that of Finasteride. Prostate hyperplasia of rats was reduced by Finasteride conjugate treatment similar to the Finasteride treatment. However, the Finasteride conjugate treated animals showed better viable condition than the Finasteride treated ones, suggesting the new compound may have improved toxicity profile than Finasteride.  相似文献   

8.
NG-Monomethylagmatine, a decarboxylation product of NG-monomethyl- -arginine, has been synthesized by reacting putrescine with N,S-dimethylthiopseudouronium iodide. The structural identity of the product was confirmed by proton NMR and mass spectroscopy, and its properties were determined on thin-layer and electrophoretic chromatography.  相似文献   

9.
N-Methyl-Δ1-pyrrolinium chloride, the product of the title enzyme, was synthesized by methylation of aminobutyraldehyde diethylacetal followed by acidic cleavage. After purification to homogeneity, it was characterized by NMR and UV spectroscopy. The compound had an absorption maximum at 210 nm; previous data indicating a maximum at 267 nm were shown to arise from an impurity. An HPLC method for the assay of N-methylputrescine oxidase from plant material was developed based on the separation of N-methyl-Δ1-pyrrolinium chloride on a cation exchange column and direct detection at 210 nm. The enzyme activity was measured in the protein fraction extracted from plant roots and treated by gel filtration on disposable PD 10 columns. A Km value of 1.9 mM was determined for methylputrescine and the enzyme from tobacco roots. The enzyme activities from N. tabacum and Datura stramonium were compared.  相似文献   

10.
Glucosinolates are plant metabolites containing an anionic nitrogeneous thioglucosidic core structure and a structurally diverse amino acid-derived side chain, which after hydrolysis by thioglucohydrolases (myrosinases) afford biological active degradation products such as nitriles and isothiocyanates. Structural diversity in glucosinolates is partially due to enzymatic modifications occurring on the preformed core structure, like the recently described oxidation of sulfides to sulfoxides catalyzed by a flavin monooxygenase identified in Arabidopsis thaliana. The enzyme product, 4-methylsulfinylbutylglucosinolate, bears a chiral sulfoxide group in its side chain. We have analyzed the epimeric purity of 4-methylsulfinylbutylglucosinolate by NMR methods using a chiral lanthanide shift reagent. The absolute configuration of the sulfoxide group has been established by comparing the 1H NMR spectra of the two sulfoximine diastereomers of natural 4-methylsulfinylbutylglucosinolate. According to our data, 4-methylsulfinylbutylglucosinolate isolated from broccoli and A. thaliana is a pure epimer and its sulfoxide group has the RS configuration. The product of the A. thaliana flavin monooxygenase has these same properties demonstrating that the enzyme is stereospecific and supporting its involvement in glucosinolate side chain formation.  相似文献   

11.
Synthesis of the fully acetylated 8-hydroxyquinoline O-??-D-glucosaminides and its 2-methyl- and 5-chloro-derivatives was conducted in the phase transfer catalytic system of solid potassium carbonateanhydrous acetonitrile. The respective triols were obtained by deacetylation according to Zemplen. The structure of all synthesized compounds was proven by 1H NMR spectroscopy. Antimicrobial activity of the non-protected glycosides was investigated using the luminescence inhibition test with marine luminous bacteria Vibrio fischeri F1 as well as by the serial dilution method with Escherichia coli, Agrobacterium tumefaciens, Bacillus cereus, and Micrococcus luteus strains from culture collection. It was found that the coupling of N-acetyl-??-D-glucosamidine residue decreased antimicrobial activity in comparison with non-glycosylated forms of quinoline.  相似文献   

12.
N-Alkyled photo-polymeriable chitosan derivative (PEGDA-CS) was synthesized by Michael reaction of chitosan and polyethylene glycol diacrylate (PEGDA) under mild reaction conditions. The chemical structure and physical properties of PEGDA-CS were characterized by FT-IR, 1H NMR, XRD and TG techniques. The degree of substitution (DS) of PEGDA-CS could be calculated from 1H NMR. PEGDA-CS exhibited good solubility in distilled water. XRD analysis showed that PEGDA-CS was amorphous. TG results demonstrated that thermal stability of the derivate was lower than that of chitosan. Antimicrobial test showed that PEGDA-CS had the antimicrobial activity on Escherichia coli. It could photopolymerize under ultraviolet light with 2959 as initiator.  相似文献   

13.
Bis benzimidazole diamide ligand-N,N′-bis(2-methylbenzimidazolyl) propanediamide [GBMA = L] has been synthesized and utilized to prepare new Mn(II) complexes of general composition [Mn(L)X2nH2O where X is an exogenous anionic ligand(X = Cl, CH3COO, SCN). The geometry of the ligand and its Mn(II) complex have been optimized at the level of UHF, by using ZINDO/1 method. Binding energies, heat of formation and bond lengths of geometry optimized structures for the ligand and complex have been obtained. The oxidation of 2,4,6-tri-tert.-butylphenol (TTBP) and 2,4,6-tri-tert.-butylaniline (TTBA) has been investigated using these Mn(II) complexes as catalyst and TBHP as an alternate source of oxygen. The organo-peroxyl compounds have been isolated and characterized by 1H NMR, 13C NMR, IR and mass data. A different product profile was obtained when H2O2 is used as an oxidant.  相似文献   

14.
Fourteen ursolic acid and oleanolic acid saponins with N-acetyl-β-d-glucosamine, and (1→4)-linked and (1→6)-linked N-acetyl-β-d-glucosamine oligosaccharide residues were synthesized in a convergent manner. The structures of all compounds were confirmed by 1H NMR and 13C NMR spectroscopy and by mass spectrometry, and their cytotoxic activities were assayed in three cancer cell lines. Only oleanolic acid-3-yl β-d-GluNAc showed significant cytotoxicity against HL-60 and BGC-823.  相似文献   

15.
Thirty-four novel compounds were synthesized using chesulfamide (N-(2-trifluoromethyl-4-chlorophenyl)-2-oxocyclohexyl sulfonamide), a high-profile fungicide, as the lead compound, and their structures were characterized by 1H NMR, 13C NMR, MS and elemental analysis. Additionally, the structure of (1S,2R)-2-((3-bromophenethyl)amino)-N-(4-chloro-2-trifluoromethylphenyl)cyclohexane-1-sulfonamide (IV-9) was confirmed by X-ray single crystal diffraction. The mycelium inhibition tests, spore germination inhibition tests, tomato pot tests and field trials were performed against strains of B. cinerea. Bioassay results showed that most of target compounds had good fungicidal activity against B. cinerea, in particular, IV-9 exhibited similar or superior effects to procymidone, boscalid and pyrisoxazole in all in vitro and in vivo tests. Moreover, there was no positive cross-resistance found between the compound IV-9 and eight commercial fungicides (azoxystrobin, boscalid, chlorothalonil, diethofencarb, fludioxonil, procymidone, pyrimethanil and pyrisoxazole) in the cross-resistance validation test performed by an innovative method.  相似文献   

16.
A series of N-[4-(4-nitrophenoxy)phenyl]-4-(substituted)-1,3-thiazol-2-amines was synthesized. Structural elucidation was accomplished by 1H NMR, 13C NMR, IR, and elemental analyses of synthesized compounds. The title compounds were derived from 4-(4-nitrophenoxy)phenyl thiourea, which is the key intermediate in the synthesis of nitroscanate, an anthelmintic drug. Among the synthesized compounds, N-[4-(4-nitrophenoxy)phenyl]-4-(4-fluorophenyl)-1,3-thiazol-2-amine and N-[4-(4-nitrophenoxy)phenyl]-4-(4-methoxyphenyl)-1,3-thiazol-2-amine exhibited potent anthelmintic and antibacterial activities.  相似文献   

17.
p-Hydroxyphenylglyoxal reacts with arginine residues in proteins to give a single product which can be quantitated spectrophotometrically. The reaction takes place under mild conditions, pH 7–9 and 25°C. Under these conditions up to complete modification of Nα-citraconyl-l-arginine was obtained within 60 min with less than 5% modification of other common amino acid side chains. The extent of modification in a protein can be determined at 340 nm using the molar absorption coefficient of 1.83 × 104m?1 cm?1 for the product at pH 9.0 and 25°C following removal of excess reagent by gel filtration. Several proteins, previously shown to have essential arginines, were modified by p-hydroxyphenylglyoxal and the losses in arginines were determined spectrophotometrically. These results were in close agreement with those of previous investigators. Rhea ovomucoid, a glycoprotein without arginines but containing an essential lysine, was relatively unaffected.  相似文献   

18.
A series of 5-imino-4-thioxo-2-imidazolidinone derivatives with different substituents at N1 and N3 was synthesized with high yield and excellent purity by the reaction of different N-arylcyanothioformamide derivatives with isocyanate derivatives. Treatment 5-imino-4-thioxo-2-imidazolidinone derivatives with acidic medium afforded 4-thioxoimidazolidin-2,5-dione derivatives. The structures of the obtained products were established based on spectroscopic IR, 1H NMR, 13C NMR, 1H, 1H-COSY, HSQC and elemental analyses. The anti-inflammatory activity of the synthesized compounds through the carrageenan-paw edema model as well as in vitro COX-1 and COX-2 inhibition assay were evaluated where most of the synthesized compounds showed significant anti-inflammatory activity. Mostly, all of our synthesized compounds have greater activity more than celecoxib toward both cyclooxygenase enzymes. All of the tested compounds (except one compound) exhibited IC50 valves for COX-2 ranged from 0.001 × 10−3 to 0.827 × 10−3 µM while the reference drug has IC50 40.0 × 10−3 µM. Furthermore, the analgesic activity of such compounds was also determined. Molecular modeling study was also conducted to rationalize the potential as anti-inflammatory agents of our synthesized compounds by predicting their binding modes, binding affinities and optimal orientation at the active site of the COX enzymes.  相似文献   

19.
Derivatization of the natural flavonoid dihydroquercetin with p-aminobenzoic acid was carried out in an ethyl acetate/citric buffer biphasic system using laccase from the fungus Trametes hirsuta. The main reaction product yield was ~68 mol %. The product was characterized by 1H NMR, 13C NMR, and liquid chromatography-mass spectroscopy, and its structure was elucidated. The reaction product affected viability of cultured human rhabdomyosarcoma cells (RD cell line) in a dose-dependent manner and, therefore, can be of interest to pharmaceutical industry.  相似文献   

20.
Since discovery and development of effective as well as safe drugs has brought a progressive era in human healthcare that is accompanied by the appearance of drug resistant bacterial strains, there is constant need of new antibacterial agent having novel mechanisms of action to act against the harmful pathogens. In the present study, several N-terminal substituted urea/thiourea derivatives were synthesized by the reaction of glutamic acid and 3-(1-piperazinyl)-1,2-benzisothiazole with various substituted phenyl isocyanates/isothiocyanates. Elemental analysis, IR, 1H NMR, 13C NMR and mass spectral data confirmed the structure of the newly synthesized compounds. The derivatives were investigated for their antibacterial and antifungal activities against various pathogens of human origin by agar well diffusion method and microdilution method. The preliminary antimicrobial bioassay reveals that the compounds containing fluoro and bromo as substituents showed promising antimicrobial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号