首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
SnRK2s are a large family of plant-specific protein kinases, which play important roles in multiple abiotic stress responses in various plant species. But the family in Gossypium has not been well studied. Here, we identified 13, 10, and 13 members of the SnRK2 family from Gossypium raimondii, Gossypium arboreum, and Gossypium hirsutum, respectively, and analyzed the locations of SnRK2 homologs in chromosomes based on genome data of cotton species. Phylogenetic tree analysis of SnRK2 proteins showed that these families were classified into three groups. All SnRK2 genes were comprised of nine exons and eight introns, and the exon distributions and the intron phase of homolog genes among different cotton species were analogous. Moreover, GhSnRK2.6 was overexpressed in Arabidopsis and upland cotton, respectively. Under salt treatment, overexpressed Arabidopsis could maintain higher biomass accumulation than wild-type plants, and GhSnRK2.6 overexpression in cotton exhibited higher germination rate than the control. So, the gene GhSnRK2.6 could be utilized in cotton breeding for salt tolerance.  相似文献   

4.
Pentatricopeptide repeat (PPR) gene family plays an essential role in the regulation of plant growth and organelle gene expression. Some PPR genes are related to fertility restoration in plant, but there is no detailed information in Gossypium. In the present study, we identified 482 and 433 PPR homologues in Gossypium raimondii (\(\hbox {D}_{5}\)) and G. arboreum (\(\hbox {A}_{2}\)) genomes, respectively. Most PPR homologues showed an even distribution on the whole chromosomes. Given an evolutionary analysis to PPR genes from G. raimondii (\(\hbox {D}_{5}\)), G. arboreum (\(\hbox {A}_{2}\)) and G. hirsutum genomes, eight PPR genes were clustered together with restoring genes of other species. Most cotton PPR genes were qualified with no intron, high proportion of \(\upalpha \)-helix and classical tertiary structure of PPR protein. Based on bioinformatics analyses, eight PPR genes were targeted in mitochondrion, encoding typical P subfamily protein with protein binding activity and organelle RNA metabolism in function. Further verified by RNA-seq and quantitative real-time PCR (qRT-PCR) analyses, two PPR candidate genes, Gorai.005G0470 (\(\hbox {D}_{5}\)) and Cotton_A_08373 (\(\hbox {A}_{2}\)), were upregulated in fertile line than sterile line. These results reveal new insights into PPR gene evolution in Gossypium.  相似文献   

5.
Gossypium hirsutum L. is a widely cultivated species characterized by its high yield and wide environmental adaptability, while Gossypium barbadense is well known for its superior fiber quality. In the present report, we, for the first time, developed G. hirsutum chromosome segment introgression lines (ILs) in a G. barbadense background (GhILs_Gb) and genetically dissected the inheritance of lint yield and fiber quality of G. hirsutum in G. barbadense background. The GhILs_Gb contains introgressed segments spanning 4121.20 cM, which represents 82.20% of the tetraploid cotton genome, with an average length of 18.65 cM. A total of 39 quantitative trait loci (QTLs) for six traits are identified in this IL population planted in Xinjiang. Four QTL clusters are detected. Of them, however, three clusters have deleterious effects on fiber length and strength and boll weight, and only one cluster on Chr. D9 can be used in marker-assisted selection (MAS) to increase lint percentage and decrease micronaire value in G. barbadense. QTL mapping showed that most of yield-related QTLs detected have positive effects and increase lint yield in G. barbadense, while most of fiber quality-related QTLs have deleterious effects except for micronaire. It suggested that G. hirsutum evolved to have a high lint yield. Several lines improved in lint percentage and boll size in G. barbadense by introgressed one fragment of G. hirsutum have been developed from the GhILs_Gb. The ILs developed, and the analyses presented here will enhance the understanding of the genetics of lint yield and fiber quality in G. hirsutum and facilitate further molecular breeding to improve lint yield in G. barbadense.  相似文献   

6.
7.
Starch synthase IIa, also known as starch granule protein 1 (SGP-1), plays a key role in amylopectin biosynthesis. The absence of SGP-1 in cereal grains is correlated to dramatic changes in the grains’ starch content, structure, and composition. An extensive investigation of starch granule proteins in this study revealed a polymorphism in the electrophoretic mobility of SGP-1 between two species of wheat, Triticum urartu and T. monococcum; this protein was, however, conserved among all other Triticum species that share the A genome inherited from their progenitor T. urartu. Two different electrophoretic profiles were identified: SGP-A1 proteins of T. urartu accessions had a SDS–PAGE mobility similar to those of tetraploid and hexaploid wheat species; conversely, SGP-A1 proteins of T. monococcum ssp. monococcum and ssp. boeoticum accessions showed a different electrophoretic mobility. The entire coding region of the two genes was isolated and sequenced in an attempt to explain the polymorphism identified. Several single nucleotide polymorphisms (SNPs) responsible for amino acid changes were identified, but no indel polymorphism was observed to explain the difference in electrophoretic mobility. Amylose content did not differ significantly among T. urartu, T. monococcum ssp. boeoticum and T. monococcum ssp. monococcum, except in one accession of the ssp. boeoticum. Conversely, several interspecific differences were observed in viscosity properties (investigated as viscosity profiles using a rapid visco analyzer—RVA profiles) of these cereal grains. T. monococcum ssp. boeoticum accessions had the lowest RVA profiles, T. urartu accessions had an intermediate RVA profile, whereas T. monococcum ssp. monococcum showed the highest RVA profile. These differences could be associated with the numerous amino acid and structural changes evident among the SGP-1 proteins.  相似文献   

8.
Genes for host-plant resistant do exist in cotton (Gossypium spp.) but improvement of cotton cultivars with resistance is difficult due to intensive breeding. Identifying molecular-genetic mechanisms associated with disease resistance can offer a new way to combat a serious threat such as Fusarium oxysporum f. sp. vasinfectum (FOV). Here, we captured and annotated “top-layer” of abundantly and specifically expressed cotton root small RNA (sRNA) including microRNA (miR) sequences during FOV pathogenesis using size-directed and adenylated linker-based sRNA cloning strategy. A total of 4116 candidate sRNA sequences with 16 to 30 nucleotide (nt) length were identified from four complementary DNA (cDNA) libraries of noninfected and FOV race 3-infected roots of susceptible (“11970”) versus resistant (“Mebane B-1”) cotton genotypes (G. hirsutum L.). The highest numbers of sRNA signatures were those with 19–24 nt long in all libraries, and interestingly, the number of sRNAs substantially increased during FOV infection in a resistant genotype, while it sharply decreased in a susceptible genotype. In BLAST analysis, more than 73 % of sRNAs matched Gossypium (G. arboretum L., G. hirsutum, and G. barbadense L.) ESTs. A small percentage of sRNAs matched A. thaliana (1.68 %), T. cacao (1.26 %), fungal (2 %), and other organism (21.33 %) ESTs. mirBase comparisons showed that 4 % of sRNAs were homologous to previously reported plant miRs, among which we predicted novel cotton Ghr-miR-160 that was not registered in the cotton miR database. These major representative sRNA signatures targeted proteins associated with the key biological processes and molecular functions, explaining the molecular mechanisms of the host defense response during the FOV pathogenesis in cotton.  相似文献   

9.

Key message

This study reports transmission genetics of chromosomal segments into Gossypium hirsutum from its most distant euploid relative, Gossypium mustelinum . Mutilocus interactions and structural rearrangements affect introgression and segregation of donor chromatin.

Abstract

Wild allotetraploid relatives of cotton are a rich source of genetic diversity that can be used in genetic improvement, but linkage drag and non-Mendelian transmission genetics are prevalent in interspecific crosses. These problems necessitate knowledge of transmission patterns of chromatin from wild donor species in cultivated recipient species. From an interspecific cross, Gossypium hirsutum × Gossypium mustelinum, we studied G. mustelinum (the most distant tetraploid relative of Upland cotton) allele retention in 35 BC3F1 plants and segregation patterns in BC3F2 populations totaling 3202 individuals, using 216 DNA marker loci. The average retention of donor alleles across BC3F1 plants was higher than expected and the average frequency of G. mustelinum alleles in BC3F2 segregating families was less than expected. Despite surprisingly high retention of G. mustelinum alleles in BC3F1, 46 genomic regions showed no introgression. Regions on chromosomes 3 and 15 lacking introgression were closely associated with possible small inversions previously reported. Nonlinear two-locus interactions are abundant among loci with single-locus segregation distortion, and among loci originating from one of the two subgenomes. Comparison of the present results with those of prior studies indicates different permeability of Upland cotton for donor chromatin from different allotetraploid relatives. Different contributions of subgenomes to two-locus interactions suggest different fates of subgenomes in the evolution of allotetraploid cottons. Transmission genetics of G. hirsutum × G. mustelinum crosses reveals allelic interactions, constraints on fixation and selection of donor alleles, and challenges with retention of introgressed chromatin for crop improvement.
  相似文献   

10.
In this study, we comparatively analyzed the 115 Hsp70 genes identified in Gossypium raimondii, Gossypium hirsutum and Gossypium arboreum genomes. Those Hsp70 genes unequally distributed among chromosomes in A and D genome of cotton (Gossypium spp.), and were classified into 29 groups according to the homology of them. Based on the localization information of the orthologs in Arabidopsis, the Hsp70 proteins were predicted to locate in cytosol, endoplasmic reticulum, mitochondrion or chloroplast. Homologous analysis indicated the evolutionary conservation of Hsp70 in cotton. In addition, those Hsp70 genes were differently expressed in Suyuan-045, Hai-7124 and TM-1, which were highly resistant, resistant, and sensitive to Verticillium dahliae respectively. The expressions of 26 Hsp70 genes were induced by Verticillium dahliae except for Hsp70-07/16/25/26, and the result suggested the potential involvement of them in responding to Verticillium wilt. Hsp70-08/30/31 was highly expressed in both Suyuan-045 and Hai-7124, and it was hypothesized that they might be involved in the resistance to the invasion of Verticillium dahliae. 144h after inoculation with Verticillium dahliae, the expression of Hsp70-13/14/15 was only up-regulated in Suyuan-045, and it was assumed that they might be involved in resistance to the extension of Verticillium dahliae. Further study on those Hsp70 genes would be valuable to reveal the role of them in Verticillium wilt resistance.  相似文献   

11.
Paul A. Fryxell 《Brittonia》1968,20(4):378-386
The five binomials published by Linnaeus inGossypium L. are reviewed, their typification and application dealt with, and some earlier misconceptions concerning them clarified. Holotypes are known forG. herbaceum, G. arboreum, G. hirsutum, andG. religiosum. A lectotype ofG. barbadense is herein designated.G. religiosum is considered synonymous withG. hirsutum. The history of the cultivatedG. hirsutum is discussed in support of the present treatment.  相似文献   

12.
Cotton fiber is the basic raw material used in the textile industry. The fiber yield is severely affected by a number of biotic and abiotic factors, such as insects, viruses, drought and salinity. Drought is a major factor that negatively impacts the yields and quality of cotton fiber. Promoters that respond to stress conditions and up-regulate transgenes are of great significance in crop improvement using genetic engineering approach. Although dehydration-responsive gene promoters, such as RD22 and RD29 from Arabidopsis, have been characterized, not much information is available regarding stress-responsive promoters from Gossypium hirsutum, which accounts for approximately 90 % of cultivated cotton. In this study, we isolated and characterized the promoter of a dehydration-responsive gene (GhRDL1) from G. hirsutum using Agrobacterium-mediated transformation in tobacco and cotton. Transgenic tobacco plants expressing uidA under the GhRDL1 promoter showed GUS activity in the trichomes. Also, GUS expression was observed to some extent in leaf, stem and floral tissues. Similar results were observed when GhRDL1 promoter was tested in transgenic cotton. Most importantly, our study showed that the GhRDL1 promoter is up-regulated in the presence of polyethylene glycol that creates water stress under invitro conditions. Thus, the GhRDL1 promoter may find its usefulness in the development of stress-tolerant cotton and other crop species in the near future.  相似文献   

13.
Plant reference genes for development and stress response studies   总被引:2,自引:0,他引:2  
Many reference genes are used by different laboratories for gene expression analyses to indicate the relative amount of input RNA/DNA in the experiment. These reference genes are supposed to show least variation among the treatments and with the control sets in a given experiment. However, expression of reference genes varies significantly from one set of experiment to the other. Thus, selection of reference genes depends on the experimental conditions. Sometimes the average expression of two or three reference genes is taken as standard. This review consolidated the details of about 120 genes attempted for normalization during comparative expression analysis in 16 different plants. Plant species included in this review are Arabidopsis thaliana, cotton (Gossypium hirsutum), tobacco (Nicotiana benthamiana and N. tabacum), soybean (Glycine max), rice (Oryza sativa), blueberry (Vaccinium corymbosum), tomato (Solanum lycopersicum), wheat (Triticum aestivum), potato (Solanum tuberosum), sugar cane (Saccharum sp.), carrot (Daucus carota), coffee (Coffea arabica), cucumber (Cucumis sativus), kiwi (Actinidia deliciosa) and grape (Vitis vinifera). The list includes model and cultivated crop plants from both monocot and dicot classes. We have categorized plant-wise the reference genes that have been used for expression analyses in any or all of the four different conditions such as biotic stress, abiotic stress, developmental stages and various organs and tissues, reported till date. This review serves as a guide during the reference gene hunt for gene expression analysis studies.  相似文献   

14.
15.
The type specimen ofGonioloboceras goniolobum (Meek), rediscovered by Spath in the British Museum, is the foundation for a more accurate comparative study of this and other species ofGonioloboceras.Gonioloboceras described asG. goniolobum byElias in 1938 is differentiated asGonioloboceras schmidti, new species. Suture sets (new term) for several growth stages inG. goniolobum (Meek),G. welleriSmith,G. schmidtiElias, G.eliasiMiller &Owen, andG. asiaticumLibrovitch are assembled and used for differentiation of the species.The Kazakhstan goniatite faunule containingG. asiaticum is considered of very late Pennsylvanian age.  相似文献   

16.

Key message

qFS07.1 controlling fiber strength was fine-mapped to a 62.6-kb region containing four annotated genes. RT-qPCR and sequence of candidate genes identified an LRR RLK gene as the most likely candidate.

Abstract

Fiber strength is an important component of cotton fiber quality and is associated with other properties, such as fiber maturity, fineness, and length. Stable QTL qFS07.1, controlling fiber strength, had been identified on chromosome 7 in an upland cotton recombinant inbred line (RIL) population from a cross (CCRI35?×?Yumian1) described in our previous studies. To fine-map qFS07.1, an F2 population with 2484 individual plants from a cross between recombinant line RIL014 and CCRI35 was established. A total of 1518 SSR primer pairs, including 1062, designed from chromosome 1 of the Gossypium raimondii genome and 456 from chromosome 1 of the G. arboreum genome (corresponding to the QTL region) were used to fine-map qFS07.1, and qFS07.1 was mapped into a 62.6-kb genome region which contained four annotated genes on chromosome A07 of G. hirsutum. RT-qPCR and comparative analysis of candidate genes revealed a leucine-rich repeat protein kinase (LRR RLK) family protein to be a promising candidate gene for qFS07.1. Fine mapping and identification of the candidate gene for qFS07.1 will play a vital role in marker-assisted selection (MAS) and the study of mechanism of cotton fiber development.
  相似文献   

17.
Molecular genetic polymorphism in three species and four subspecies of crested wheatgrass, Agropyron, was studied using 56K diversity array technology (DArT), and the results confirmed with four selected SNP Amplifluor markers. In total, 82 accessions from three species—A. desertorum, A. fragile, and two subspecies of A. cristatum (ssp. cristatum and ssp. pectinatum)—were collected from various regions of Kazakhstan or ordered from Genebank in Russia, for morphological taxonomy and molecular phylogenetic analyses. In the DArT clone analysis, two Agropyron species with narrow linear spikes, A. fragile and A. desertorum, were found to be genetically similar and fell within a single clade (A). Both species share similar eco-geographical origins. All samples of A. cristatum including the two subspecies, ssp. pectinatum and ssp. cristatum, which have short broad spikes, were interspersed within two other clades, B and C, more genetically distanced from the other species. Four SNP Amplifluor markers developed for genetic fragments on different chromosomes confirmed the distinction between the studied species. These results, derived from multiple molecular markers, suggest that the morphological taxonomy of these Agropyron species should be re-considered carefully in the future.  相似文献   

18.

Key message

In GhCFE5 homoeologs, GhCFE5D interacted with more actin homologs and stronger interaction activity than GhCFE5A. GhCFE5D - but not GhCFE5A -overexpression severely disrupted actin cytoskeleton organization and significantly suppressed cell elongation.

Abstract

Homoeologous genes are common in polyploid plants; however, their functional divergence is poorly elucidated. Allotetraploid Upland cotton (Gossypium hirsutum, AADD) is the most widely cultivated cotton; accounting for more than 90 % of the world’s cotton production. Here, we characterized GhCFE5A and GhCFE5D homoeologs from G. hirsutum acc TM-1. GhCFE5 homoeologs are expressed preferentially in fiber cells; and a significantly greater accumulation of GhCFE5A mRNA than GhCFE5D mRNA was found in all tested tissues. Overexpression of GhCFE5D but not GhCFE5A seriously inhibits the Arabidopsis hypocotyl and root cell elongation. Yeast two-hybrid assay and bimolecular fluorescence complementation (BiFC) analysis showed that compared with GhCFE5A, GhCFE5D interacts with more actin homologs and has a stronger interaction activity both from Arabidopsis and Upland cotton. Interestingly, subcellular localization showed that GhCFE5 resides on the cortical endoplasmic reticulum (ER) network and is colocalized with actin cables. The interaction activities between GhCFE5 homoeologs and actin differ in their effects on F-actin structure in transgenic Arabidopsis root cells. The F-actin changed direction from vertical to lateral, and the actin cytoskeleton organization was severely disrupted in GhCFE5D-overexpressing root cells. These data support the functional divergence of GhCFE5 homoeologs in the actin cytoskeleton structure and cell elongation, implying an important role for GhCFE5 in the evolution and selection of cotton fiber.
  相似文献   

19.
Total seed storage proteins were studied in 50 accessions of A. hypogaea (11 A. hypogaea ssp. hypogaea var hypogaea, 13 A. hypogaea ssp. hypogaea var hirsuta, 11 A. hypogaea ssp. fastigiata var fastigiata and 15 A. hypogaea ssp. fastigiata var. vulgaris accessions) in SDS PAGE. These accessions were also analysed for albumin and globulin seed protein fractions. Among the six seed protein markers presently used, it was found that globulin fraction showed maximum diversity (77.2%) in A. hypogaea accessions followed by albumin (52.3%), denatured total soluble protein fraction in embryo (33.3%) and cotyledon (28.5%). The cluster analysis based on combined data of cotyledons, embryos, albumins and globulins seed protein fractions demarcated the accessions of two subspecies hypogaea and fastigiata into two separate clusters supported by 51% bootstrap value, with few exceptions, suggesting the genotypes to be moderately diverse. Native and denatured total soluble seed storage proteins were also electrophoretically analysed in 27 wild Arachis species belonging to six sections of the genus. Cluster analysis using different methods were performed for different seed proteins data alone and also in combination. Section Caulorrhizae (C genome) and Triseminatae (T genome) formed one, distantly related group to A. hypogaea and other section Arachis species in the dendrogram based on denatured seed storage proteins data. The present analysis has maintained that the section Arachis species belong to primary and secondary genepools and, sections Procumbenetes and Erectoides belong to tertiary gene pools.  相似文献   

20.
Cotton (Gossypium spp.), as the most important fiber and oilseed crop in the world, is extremely important for the industry. However, due to its indeterminate growth habit and complex branching system, massive labor costs are needed for shoot apex removal and branch pruning during cotton production. Therefore, it is very important to explore branch-controlling genes and genetically modify the branch architecture of cotton. Strigolactones (SLs) are a novel class of plant hormone that inhibit the outgrowth of lateral branches. To elucidate the role of SLs in branch development of cotton, we cloned and characterized GhMAX2a and GhMAX2b from tetraploid upland cotton (Gossypium hirsutum), the orthologs of Arabidopsis MAX2, rice D3, and petunia RMS4. GhMAX2a/2b was ubiquitously expressed in all tested tissues of cotton, with relatively higher expression levels in leaves and lateral buds. Subcellular localization assay showed that the GhMAX2-GFP fusion protein localized to the nucleus. Both GhMAX2a and GhMAX2b can fully rescue the dwarfed and highly branched phenotypes of the Arabidopsis max2-1 mutant, indicating that GhMAX2s have conserved functions with that of AtMAX2. The cotton GhMAX2b interacted with Arabidopsis Skp1-like 1 (ASK1) proteins in vitro which was further confirmed in the Arabidopsis protoplasts using the co-immunoprecipitation assay, indicating that GhMAX2b probably functions through forming an SCF E3 complex with Skp and other proteins in the Arabidopsis. These results suggest that the cotton GhMAX2s encode functional MAX2 that can inhibit the shoot lateral branching. Further functional analysis of GhMAX2s in determining cotton branch architecture and yield is underway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号