首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cerebral deposition of amyloid beta-peptide (Abeta) is a major factor in the etiology of Alzheimer's disease. beta-Secretase (BACE) initiates the generation of Abeta by cleaving the amyloid precursor protein at the beta-site and is therefore a prime target for therapeutic intervention. Here we report a cell-based method suitable for monitoring BACE activity and the efficacy of protease inhibitors. A fusion protein containing the amino-terminal transmembrane domain of Golgi alpha-mannosidase II, a Drosophila Golgi integral membrane protein, linked to human alkaline phosphatase (AP) by a short beta-site sequence, was expressed in Drosophila S2 cells. While the uncleaved fusion protein was retained in the Golgi apparatus, cleavage of the beta-site by BACE resulted in the release of AP to the culture medium, where it was easily detected and quantified. Three peptidomimetic inhibitors (LB83190, LB83192, LB83202) were tested for their efficacy with this cell-based assay. While LB83190 and LB83192 effectively blocked BACE activity, LB83202, a carboxylated derivative of LB83192, did not. This is consistent with the inability of LB83202 to permeate the cell membrane. The present cell-based assay could provide a convenient tool for high-throughput screening of substances that can interfere with BACE in living cells.  相似文献   

3.
Amyloid beta-peptide is generated by two sequential proteolytic cleavages mediated by beta-secretase (BACE) and gamma-secretase. BACE was recently identified as a membrane-associated aspartyl protease. We have now analyzed the maturation and pro-peptide cleavage of BACE. Pulse-chase experiments revealed that BACE is post-translationally modified during transport to the cell surface, which can be monitored by a significant increase in the molecular mass. The increase in molecular mass is caused by complex N-glycosylation. Treatment with tunicamycin and N-glycosidase F led to a BACE derivative with a molecular weight corresponding to an unmodified version. In contrast, the mature form of BACE was resistant to endoglycosidase H treatment. The cytoplasmic tail of BACE was required for efficient maturation and trafficking through the Golgi; a BACE variant lacking the cytoplasmic tail undergoes inefficient maturation. In contrast a soluble BACE variant that does not contain a membrane anchor matured more rapidly than full-length BACE. Pro-BACE was predominantly located within the endoplasmic reticulum. Pro-peptide cleavage occurred immediately before full maturation and trafficking through the Golgi.  相似文献   

4.
beta-Secretase (BACE) is a transmembrane aspartyl protease, which generates the N terminus of Alzheimer's disease amyloid beta-peptide. Here, we report that BACE can be phosphorylated within its cytoplasmic domain at serine residue 498 by casein kinase 1. Phosphorylation exclusively occurs after full maturation of BACE by propeptide cleavage and complex N-glycosylation. Phosphorylation/dephosphorylation affects the subcellular localization of BACE. BACE wild type and an S498D mutant that mimics phosphorylated BACE are predominantly located within juxtanuclear Golgi compartments and endosomes, whereas nonphosphorylatable BACE S498A accumulates in peripheral EEA1-positive endosomes. Antibody uptake assays revealed that reinternalization of BACE from the cell surface is independent of its phosphorylation state. After reinternalization, BACE wild type as well as BACE S498D are efficiently retrieved from early endosomal compartments and further targeted to later endosomal compartments and/or the trans-Golgi network. In contrast, nonphosphorylatable BACE S498A is retained within early endosomes. Our results therefore demonstrate regulated trafficking of BACE within the secretory and endocytic pathway.  相似文献   

5.
Sidera C  Parsons R  Austen B 《Proteomics》2005,5(6):1533-1543
Beta-amyloid is released into the brains of Alzheimer's patients, where it aggregates and causes damage to neurons. It is cleaved proteolytically from a large transmembrane glycoprotein amyloid precursor protein by a membrane-bound protease, known as beta-secretase identified previously as the acid protease, Asp-2. We have shown previously that beta-secretase is up-regulated by increased intracellular cholesterol, and down-regulated by cholesterol biosynthesis inhibition. Here we show using mass spectrometry that discrete changes in the glycosylation and palmitoylation of beta-secretase occur when cells expressing it are treated with statins.  相似文献   

6.
7.
beta-Secretase, also known as BACE, is a transmembrane aspartyl protease, which generates the N terminus of Alzheimer's disease amyloid beta-peptide. The activity of beta-secretase is the rate-limiting step of brain plaques production in vivo, and hence is a potential target for disease modifying drugs for Alzheimer's disease. To better understand the mechanism of action of beta-secretase and help explore novel strategies for drug discovery for Alzheimer's disease, it is important to elucidate the three-dimensional structure of its zymogen. Based on the X-ray structure of the enzyme's protease domain and the X-ray structure of pepsinogen, a model of the three-dimensional structure of the beta-secretase zymogen has been constructed. Comparison of the computed structure of pro-BACE with X-ray structures of pepsinogen and progastricsin (two other pro-aspartyl proteases) reveals a significant difference in the relationship of the pro-segment to the catalytic aspartates. In both pepsinogen and progastricsin a lysine side-chain in the pro-segment forms a salt bridge to the two catalytic aspartates, occupying the position normally occupied by a catalytic water. In the pro-BACE model there is no salt bridge, and the corresponding residue-a proline-does not interact at all with the catalytic residues. These findings can be used to elucidate the recent observations that the pro-domain of beta-secretase does not suppress activity as in a strict zymogen but does appear to facilitate proper folding of an active protease domain. The predicted three-dimensional structure of beta-secretase zymogen and the relevant findings might also provide useful insights for rational design of effective drugs against Alzheimer's disease.  相似文献   

8.
Polarized cells such as neurons and endothelial cells appear to be involved in two invariant pathological features of Alzheimer's disease pathology, namely the formation of senile plaques and cerebral amyloid angiopathy. This implicates polarized sorting mechanisms in the production and accumulation of amyloid beta-peptide (Abeta). We have now studied polarized sorting of beta-secretase (BACE) in Madin-Darby canine kidney (MDCK) cells. The majority of BACE is sorted to the apical surface of MDCK cells where very little beta-amyloid precursor protein (betaAPP) is observed, because betaAPP undergoes basolateral sorting. Consistent with the usage of similar mechanisms for polarized sorting, BACE was also found to be targeted to axons of hippocampal neurons. The remaining basolaterally sorted BACE competes with the highly polarized basolateral alpha-secretase activity. Therefore, substantial amounts of BACE are targeted away from betaAPP to a non-amyloidogenic compartment, a cellular mechanism that limits Abeta generation. In addition, no alpha-secretase activity was observed on the apical side whereas gamma-secretase activity is observed on the basolateral and the apical side. Consistent with this finding, substantial amounts of Abeta can be produced apically upon missorting of betaAPP to the apical surface. These data demonstrate that Abeta production is limited in polarized cells by differential targeting of BACE and its substrate betaAPP. Moreover, our findings suggest that betaAPP may not be a major physiological substrate of BACE.  相似文献   

9.
The enzymes involved in glycosaminoglycan chain biosynthesis are mostly Golgi resident proteins, but some are secreted extracellularly. For example, the activities of heparan sulfate 6-O-sulfotransferase (HS6ST) and heparan sulfate 3-O-sulfotransferase are detected in the serum as well in the medium of cell lines. However, the biological significance of this is largely unknown. Here we have investigated by means of monitoring green fluorescent protein (GFP) fluorescence how C-terminally GFP-tagged HS6STs that are stably expressed in CHO-K1 cell lines are secreted/shed. Brefeldin A and monensin treatments revealed that the N-terminal hydrophobic domain of HS6ST3 is processed in the endoplasmic reticulum or cis/medial Golgi. Treatment of HS6ST3-GFP-expressing cells with various protease inhibitors revealed that the cell-permeable beta-secretase inhibitor N-benzyloxycarbonyl-Val-Leu-leucinal (Z-VLL-CHO) specifically inhibits HS6ST secretion, although this effect was specific for HS6ST3 but not for HS6ST1 and HS6ST2. However, Z-VLL-CHO treatment did not increase the molecular size of the HS6ST3-GFP that accumulated in the cell. Z-VLL-CHO treatment also induced the intracellular accumulation of SP-HS6ST3(-TMD)-GFP, a modified secretory form of HS6ST3 that has the preprotrypsin leader sequence as its N-terminal hydrophobic domain. Diminishment of beta-secretase activity by coexpressing the amyloid precursor protein of a Swedish mutant, a potent beta-secretase substrate, also induced intracellular HS6ST3-GFP accumulation. Moreover, Z-VLL-CHO treatment increased the 6-O-sulfate (6S) levels of HS, especially in the disaccharide unit of hexuronic acid-GlcNS(6S). Thus, the HS6ST3 enzyme in the Golgi apparatus and therefore the 6-O sulfation of heparan sulfates in the cell are at least partly regulated by beta-secretase via an indirect mechanism.  相似文献   

10.
The aspartic protease beta-secretase (BACE) cleaves the amyloid precursor protein into a 42 residue beta-peptide, which is the principal biochemical marker of Alzheimer's disease. Multiple explicit-water molecular dynamics simulations of the apo and inhibitor bound structures of BACE indicate that both open- and closed-flap conformations are accessible at room temperature and should be taken into account for inhibitor design. Correlated motion is observed within each of the two lobes of BACE, as well as for the interfacial region. A self-inhibited conformation with the side chain of Tyr71 occupying the S(1) pocket is present in some of the unbound simulations. The reversible loss of the side chain hydrogen bond between the catalytic Asp32 and Ser35, due to the concomitant reorientation of the Ser35 hydroxyl group and a water molecule conserved in pepsin-like enzymes, provides further evidence for the suggestion that Ser35 assists in proton acceptance and release by Asp32 during catalysis.  相似文献   

11.
We have synthesized and evaluated a series of conformationally biased P3 amide replacements based on an isophthalamide lead structure. The studies resulted in the identification of the beta-secretase inhibitor 7m which has an in vitro IC(50)=35 nM. The synthesis and biological activities of these compounds are described.  相似文献   

12.
We describe a novel series of potent inhibitors of human beta-secretase. These compounds possess the hydroxyethyl amine transition state isostere. A 2.5A crystal structure of inhibitor 32 bound to BACE is provided.  相似文献   

13.
We describe an optimized series of acyclic hydroxyethylamine transition state isosteres of beta-secretase that incorporates a variety of P(2) side chains that yield potent inhibitors with excellent cellular activity. A 2.2A crystal structure of compound 13 is shown.  相似文献   

14.
Alzheimer's beta-secretase (BACE1) is a membrane-bound protease that cleaves the amyloid precursor protein (APP) in the trans-Golgi network, an initial step in the pathogenesis of Alzheimer's disease. Although BACE1 is distributed among various tissues including brain, its physiological substrate other than APP have not been identified. We have recently found that when BACE1 was overexpressed in COS cells together with alpha2,6-sialyltransferase (ST6Gal I), the secretion of ST6Gal I markedly increased, suggesting that BACE1 cleaves ST6Gal I as a physiological substrate. Thus BACE1 is the first identified protease that is responsible for the cleavage and secretion of glycosyltransferases.  相似文献   

15.
The β-secretase (BACE1) features a unique sulfur rich motif (M462xxxC466xxxM470xxxC474xxxC478) in its transmembrane helix (BACE1-TM) which is characteristic for proteins involved in copper ion storage and transport. While this motif has been shown to promote BACE1-TM trimerization and binding of copper ions in vitro, the structural basis for the interaction of copper ions with the BACE1-TM is still not well understood. Using molecular dynamics (MD) simulations, we show that membrane embedded BACE1-TMs adopt a flexible trimeric structure that binds and conducts copper ions through variable coordination. In coarse-grained (CG) MD simulations, the spontaneous assembly of BACE1-TMs trimers results in a right-handed helix packing arrangement. In subsequent atomistic MD simulations the sulfur rich motif defines characteristic copper ion coordination sites along a constricted partially solvated axial pore. Sliding and tilting of BACE1-TMs along smooth A459xxxA463/464xxA467 surfaces, facilitated by a central P472 induced kink, enables copper ions to alternate between different coordination sites, including the prominent C466 and M470. We shed light into the structural arrangement of BACE1-TM trimers and propose a mechanism for copper ion conduction that might also apply to other proteins involved in metal ion transport.  相似文献   

16.
Human BACE, also known as beta-secretase, shows promise as a potential therapeutic target for Alzheimer's disease. We determined the apo structure of BACE to 1.75 A, and a structure of a hydroxyethylamine inhibitor complex derived by soaking. These show significant active-site movements compared to previously described BACE structures. Additionally, the structures reveal two pockets that could be targeted by structure-based drug design.  相似文献   

17.
beta-Site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a membrane-bound aspartic protease that cleaves amyloid precursor protein to produce a neurotoxic peptide, Abeta, and is implicated in triggering the pathogenesis of Alzheimer disease. We previously reported that BACE1 cleaved rat beta-galactoside alpha2,6-sialyltransferase (ST6Gal I) that was overexpressed in COS cells and that the NH(2) terminus of ST6Gal I secreted from the cells (E41 form) was Glu(41). Here we report that BACE1 gene knock-out mice have one third as much plasma ST6Gal I as control mice, indicating that BACE1 is a major protease which is responsible for cleaving ST6Gal I in vivo. We also found that BACE1-transgenic mice have increased level of ST6Gal I in plasma. Secretion of ST6Gal I from the liver into the plasma is known to be up-regulated during the acute-phase response. To investigate the role of BACE1 in ST6Gal I secretion in vivo, we analyzed the levels of BACE1 mRNA in the liver, as well as the plasma levels of ST6Gal I, in a hepatopathological model, i.e. Long-Evans Cinnamon (LEC) rats. This rat is a mutant that spontaneously accumulates copper in the liver and incurs hepatic damage. LEC rats exhibited simultaneous increases in BACE1 mRNA in the liver and in the E41 form of the ST6Gal I protein, the BACE1 product, in plasma as early as 6 weeks of age, again suggesting that BACE1 cleaves ST6Gal I in vivo and controls the secretion of the E41 form.  相似文献   

18.
Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity   总被引:2,自引:0,他引:2  
Beta-site APP-cleaving enzyme (BACE) is required for production of the Alzheimer's disease (AD)-associated Abeta protein. BACE levels are elevated in AD brain, and increasing evidence reveals BACE as a stress-related protease that is upregulated following cerebral ischemia. However, the molecular mechanism responsible is unknown. We show that increases in BACE and beta-secretase activity are due to posttranslational stabilization following caspase activation. We also found that during cerebral ischemia, levels of GGA3, an adaptor protein involved in BACE trafficking, are reduced, while BACE levels are increased. RNAi silencing of GGA3 also elevated levels of BACE and Abeta. Finally, in AD brain samples, GGA3 protein levels were significantly decreased and inversely correlated with increased levels of BACE. In summary, we have elucidated a GGA3-dependent mechanism regulating BACE levels and beta-secretase activity. This mechanism may explain increased cerebral levels of BACE and Abeta following cerebral ischemia and existing in AD.  相似文献   

19.
Several simple scoring methods were examined for 2 series of beta-secretase (BACE-1) inhibitors to identify a docking/scoring protocol which could be used to design BACE-1 inhibitors in a drug discovery program. Both the PLP1 score and MMFFs interaction energy (E(inter)) performed as well or better than more computationally intensive methods for a set of substrate-based inhibitors, while the latter performed well for both sets of inhibitors.  相似文献   

20.
A series of inhibitors of beta-amyloid formation have been developed based on the beta-secretase cleavage site (VNL-DA) of the Swedish mutant Amyloid Precursor Protein. A simple tripeptide aldehyde was found to be the most potent (IC(50) = 700 nM) in the series displaying an inhibitory profile which is different from reported inhibitors of beta-amyloid formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号