首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The replication mechanism of bluetongue virus (BTV) has been studied by an in vivo reverse genetics (RG) system identifying the importance of certain BTV proteins for primary replication of the virus. However, a unique in vitro cell-free virus assembly system was subsequently developed, showing that it did not require the same set of viral components, which is indicative of differences in these two systems. Here, we studied the in vivo primary replicase complex more in-depth to determine the minimum components of the complex. We showed that while NS2 is an essential component of the primary replication stage during BTV infection, NS1 is not an essential component but may play a role in enhancing BTV protein synthesis. Furthermore, we demonstrated that VP7, a major structural protein of the inner core, is not required for primary replication but appears to stabilize the replicase complex. In contrast, VP3, the other major structural core protein, is an essential component of the complex, together with the three minor enzymatic proteins (VP1, VP4, and VP6) of the core. In addition, our data have demonstrated that the smallest minor protein, VP6, which is known to possess an RNA-dependent helicase activity, may also act as an RNA translocator during assembly of the primary replicase complex.  相似文献   

2.
Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3’untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3’ UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3’UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3’UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3’ UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity.  相似文献   

3.
同时表达蓝舌病毒四个主要结构蛋白可装配成病毒样颗粒   总被引:2,自引:0,他引:2  
为研制蓝舌病毒(bluetongue virus,BTV)基因工程疫苗和进一步研究BTV结构与功能的关系,对BTV病毒样颗粒(VLP)的装配进行了研究。同时在昆虫细胞中表达BTV主要结构蛋白VP7、VP3、VP2与VP5,将细胞裂解液超速离心纯化后,发现主要存在两 形态的颗粒:一种与前文报道的病毒核心颗粒(CLP)相同,直径约为60nm ̄70nm,蛋白壳厚10nm ̄15nm;另一种大小为70nm ̄  相似文献   

4.
5.

Background  

Bluetongue virus (BTV) particles consist of seven structural proteins that are organized into two capsids. In addition, BTV also encodes three non-structural (NS) proteins of which protein 2 (NS2) is the RNA binding protein and is also the major component of virus encoded inclusion bodies (VIBs), which are believed to be virus assembly sites. To investigate the contribution of NS2 in virus replication and assembly we have constructed inducible mammalian cell lines expressing full-length NS2. In addition, truncated NS2 fragments were also generated in an attempt to create dominant negative mutants for NS2 function.  相似文献   

6.
Rubella virus is an enveloped positive-strand RNA virus of the family TOGAVIRIDAE: Virions are composed of three structural proteins: a capsid and two membrane-spanning glycoproteins, E2 and E1. During virus assembly, the capsid interacts with genomic RNA to form nucleocapsids. In the present study, we have investigated the role of capsid phosphorylation in virus replication. We have identified a single serine residue within the RNA binding region that is required for normal phosphorylation of this protein. The importance of capsid phosphorylation in virus replication was demonstrated by the fact that recombinant viruses encoding hypophosphorylated capsids replicated at much lower titers and were less cytopathic than wild-type virus. Nonphosphorylated mutant capsid proteins exhibited higher affinities for viral RNA than wild-type phosphorylated capsids. Capsid protein isolated from wild-type strain virions bound viral RNA more efficiently than cell-associated capsid. However, the RNA-binding activity of cell-associated capsids increased dramatically after treatment with phosphatase, suggesting that the capsid is dephosphorylated during virus assembly. In vitro assays indicate that the capsid may be a substrate for protein phosphatase 1A. As capsid is heavily phosphorylated under conditions where virus assembly does not occur, we propose that phosphorylation serves to negatively regulate binding of viral genomic RNA. This may delay the initiation of nucleocapsid assembly until sufficient amounts of virus glycoproteins accumulate at the budding site and/or prevent nonspecific binding to cellular RNA when levels of genomic RNA are low. It follows that at a late stage in replication, the capsid may undergo dephosphorylation before nucleocapsid assembly occurs.  相似文献   

7.
Non-structural protein 1 (NS1) is one of the most enigmatic proteins of the Dengue virus (DENV), playing distinct functions in immune evasion, pathogenesis and viral replication. The recently reported crystal structure of DENV NS1 revealed its peculiar three-dimensional fold; however, detailed information on NS1 function at different steps of the viral replication cycle is still missing. By using the recently reported crystal structure, as well as amino acid sequence conservation, as a guide for a comprehensive site-directed mutagenesis study, we discovered that in addition to being essential for RNA replication, DENV NS1 is also critically required for the production of infectious virus particles. Taking advantage of a trans-complementation approach based on fully functional epitope-tagged NS1 variants, we identified previously unreported interactions between NS1 and the structural proteins Envelope (E) and precursor Membrane (prM). Interestingly, coimmunoprecipitation revealed an additional association with capsid, arguing that NS1 interacts via the structural glycoproteins with DENV particles. Results obtained with mutations residing either in the NS1 Wing domain or in the β-ladder domain suggest that NS1 might have two distinct functions in the assembly of DENV particles. By using a trans-complementation approach with a C-terminally KDEL-tagged ER-resident NS1, we demonstrate that the secretion of NS1 is dispensable for both RNA replication and infectious particle production. In conclusion, our results provide an extensive genetic map of NS1 determinants essential for viral RNA replication and identify a novel role of NS1 in virion production that is mediated via interaction with the structural proteins. These studies extend the list of NS1 functions and argue for a central role in coordinating replication and assembly/release of infectious DENV particles.  相似文献   

8.
An immunoaffinity chromatography (IAC) method was optimized for the selective capture of bluetongue virus (BTV) from blood samples and isolation of the virus in cell culture. The antibody against BTV core particles (lacking the outer capsid proteins VP2 and VP5) was used for the optimization of IAC technique. The antibody against BTV core particle was conjugated with Protein A-virus complex and the complex was dissociated using elution buffer (4 M MgCl2 with 75 mM HEPES, pH 6.5). The optimized IAC method specifically purified the BTV without capturing other commonly infecting small ruminant’s viruses like gaotpox virus (GTPV), sheeppox virus (SPPV), Peste des petits ruminants virus (PPRV) and Foot and mouth disease virus (FMDV). The blood samples (n?=?22), positive for BTV antigen in sandwich-ELISA were attempted for virus isolation in the BHK-21 cell using the optimized IAC method. A total of seven BTV were isolated by selective capturing of the virion particles. The isolated viruses were characterized by RNA-PAGE, sequence analysis and serum neutralization test (SNT). Electropherotypic analysis of viral dsRNA in the RNA-PAGE revealed the presence of ten dsRNA segments characteristic of BTV. Out of seven isolates, four isolates were identified as BTV-1 and three isolates were identified as BTV-16 based on nucleotide sequences of segment-2. Phylogenetic analysis of segment-2 nucleotide sequence segregated BTV-1 and BTV-16 isolates to monophyletic cluster at close proximity to other eastern topotype. In SNT, hyperimmune serum (HIS) against BTV-1 neutralized the four BTV-1 isolates up to a titer?>?256 and HIS against BTV-16 neutralized the three BTV-16 isolates up to a titer?>?128. The IAC technique will be useful for the selective capture of BTV from mixed infection (BTV with other small ruminant’s viruses) and isolation from blood sample having low viral load by enrichment.  相似文献   

9.
10.
Bacteriophage phi6 is an enveloped dsRNA virus with a segmented genome. Phi6 specifically packages one copy of each of its three genome segments into a preassembled polymerase complex. This leads to expansion of the polymerase complex, minus and plus strand RNA synthesis, and assembly of the nucleocapsid. The phi6 in vitro assembly and packaging system is a valuable model for dsRNA virus replication. The structure of the nucleocapsid at 7.5 A resolution presented here reveals the secondary structure of the two major capsid proteins. Asymmetric P1 dimers organize as an inner T = 1 shell, and P8 trimers organize as an outer T = 13 laevo shell. The organization of the P1 molecules in the unexpanded and expanded polymerase complex suggests that the expansion is accomplished by rigid body movements of the P1 monomers. This leads to exposure of new potential RNA binding surfaces to control the sequential packaging of the genome segments.  相似文献   

11.
Structure of the Bluetongue Virus Capsid   总被引:31,自引:21,他引:10       下载免费PDF全文
  相似文献   

12.
13.
Orbiviruses form the largest genus of the family Reoviridae consisting of at least 23 different virus species. One of these is the bluetongue virus (BTV) and causes severe hemorrhagic disease in ruminants, and is transmitted by bites of Culicoides midges. BTV is a non-enveloped virus which is released from infected cells by cell lysis and/or a unique budding process induced by nonstructural protein NS3/NS3a encoded by genome segment 10 (Seg-10). Presence of both NS3 and NS3a is highly conserved in Culicoides borne orbiviruses which is suggesting an essential role in virus replication. We used reverse genetics to generate BTV mutants to study the function of NS3/NS3a in virus replication. Initially, BTV with small insertions in Seg-10 showed no CPE but after several passages these BTV mutants reverted to CPE phenotype comparable to wtBTV, and NS3/NS3a expression returned by repair of the ORF. These results show that there is a strong selection for functional NS3/NS3a. To abolish NS3 and/or NS3a expression, Seg-10 with one or two mutated start codons (mutAUG1, mutAUG2 and mutAUG1+2) were used to generate BTV mutants. Surprisingly, all three BTV mutants were generated and the respective AUGMet→GCCAla mutations were maintained. The lack of expression of NS3, NS3a, or both proteins was confirmed by westernblot analysis and immunostaining of infected cells with NS3/NS3a Mabs. Growth of mutAUG1 and mutAUG1+2 virus in BSR cells was retarded in both insect and mammalian cells, and particularly virus release from insect cells was strongly reduced. Our findings now enable research on the role of RNA sequences of Seg-10 independent of known gene products, and on the function of NS3/NS3a proteins in both types of cells as well as in the host and insect vector.  相似文献   

14.
Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77-79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell.  相似文献   

15.
将蓝舌病毒(BTV)13型S7与L3基因同时插入杆状病毒双表达载体pEastBacDual,获得重组杆状病毒rvBacBTVP37。该病毒在昆虫细胞中同时高水平表达BTV13 VP3与VP7蛋白,可以高效自动装配出20面体的60 ̄70nm空心颗粒。分析表明,所获颗粒为空心的BTV核心样颗粒(CLP),其成分为VP3与VP7,不含BTV其它任何蛋白与核酸。这种装配需要VP3与VP7的共同参与,二者缺  相似文献   

16.
Infectious bursal disease virus (IBDV), a double-stranded RNA (dsRNA) virus belonging to the Birnaviridae family, is an economically important avian pathogen. The IBDV capsid is based on a single-shelled T=13 lattice, and the only structural subunits are VP2 trimers. During capsid assembly, VP2 is synthesized as a protein precursor, called pVP2, whose 71-residue C-terminal end is proteolytically processed. The conformational flexibility of pVP2 is due to an amphipathic alpha-helix located at its C-terminal end. VP3, the other IBDV major structural protein that accomplishes numerous roles during the viral cycle, acts as a scaffolding protein required for assembly control. Here we address the molecular mechanism that defines the multimeric state of the capsid protein as hexamers or pentamers. We used a combination of three-dimensional cryo-electron microscopy maps at or close to subnanometer resolution with atomic models. Our studies suggest that the key polypeptide element, the C-terminal amphipathic alpha-helix, which acts as a transient conformational switch, is bound to the flexible VP2 C-terminal end. In addition, capsid protein oligomerization is also controlled by the progressive trimming of its C-terminal domain. The coordination of these molecular events correlates viral capsid assembly with different conformations of the amphipathic alpha-helix in the precursor capsid, as a five-alpha-helix bundle at the pentamers or an open star-like conformation at the hexamers. These results, reminiscent of the assembly pathway of positive single-stranded RNA viruses, such as nodavirus and tetravirus, add new insights into the evolutionary relationships of dsRNA viruses.  相似文献   

17.
Bluetongue virus core protein VP6 is an ATP hydrolysis dependent RNA helicase. However, despite much study, the precise role of VP6 within the viral capsid and its structure remain unclear. To investigate the requirement of VP6 in BTV replication, we initiated a structural and biological study. Multinuclear nuclear magnetic resonance spectra were assigned on his-tagged full-length VP6 (329 amino acid residues) as well as several truncated VP6 variants. The analysis revealed a large structured domain with two large loop regions that exhibit significant conformational exchange. One of the loops (amino acid position 34–130) could be removed without affecting the overall fold of the protein. Moreover, using a BTV reverse genetics system, it was possible to demonstrate that the VP6-truncated BTV was viable in BHK cells in the absence of any helper VP6 protein, suggesting that a large portion of this loop region is not absolutely required for BTV replication.  相似文献   

18.
Dendritic cells (DCs), especially plasmacytoid DCs (pDCs), produce large amounts of alpha/beta interferon (IFN-α/β) upon infection with DNA or RNA viruses, which has impacts on the physiopathology of the viral infections and on the quality of the adaptive immunity. However, little is known about the IFN-α/β production by DCs during infections by double-stranded RNA (dsRNA) viruses. We present here novel information about the production of IFN-α/β induced by bluetongue virus (BTV), a vector-borne dsRNA Orbivirus of ruminants, in sheep primary DCs. We found that BTV induced IFN-α/β in skin lymph and in blood in vivo. Although BTV replicated in a substantial fraction of the conventional DCs (cDCs) and pDCs in vitro, only pDCs responded to BTV by producing a significant amount of IFN-α/β. BTV replication in pDCs was not mandatory for IFN-α/β production since it was still induced by UV-inactivated BTV (UV-BTV). Other inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IL-12p40, were also induced by UV-BTV in primary pDCs. The induction of IFN-α/β required endo-/lysosomal acidification and maturation. However, despite being an RNA virus, UV-BTV did not signal through Toll-like receptor 7 (TLR7) for IFN-α/β induction. In contrast, pathways involving the MyD88 adaptor and kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK) were implicated. This work highlights the importance of pDCs for the production of innate immunity cytokines induced by a dsRNA virus, and it shows that a dsRNA virus can induce IFN-α/β in pDCs via a novel TLR-independent and Myd88-dependent pathway. These findings have implications for the design of efficient vaccines against dsRNA viruses.  相似文献   

19.
Bluetongue (BT), caused by Bluetongue virus (BTV), is an economically important disease affecting sheep, deer, cattle, and goats. Since 1998, a series of BT outbreaks have spread across much of southern and central Europe. To study why the epidemiology of the virus happens to change, it is important to fully know the mechanisms resulting in its genetic diversity. Gene mutation and segment reassortment have been considered as the key forces driving the evolution of BTV. However, it is still unknown whether intragenic recombination can occur and contribute to the process in the virus. We present here several BTV groups containing mosaic genes to reveal that intragenic recombination can take place between the virus strains and play a potential role in bringing novel BTV lineages.Bluetongue (BT) is an economically significant disease that seriously threatens sheep, some species of deer, and to a lesser extent cattle and goats. As a vector-borne viral disease of ruminants, BT is endemic in tropical and subtropical countries (46). However, a series of BT outbreaks have spread across much of southern and central Europe since 1998 (29). Thus, it is of great importance to fully understand the molecular basis driving the change of its epidemiology so as to prevent or limit future BT pandemics.Bluetongue virus (BTV), the pathogen of BT, belongs to the Orbivirus genus of the Reoviridae family (46). The virus has a segmented double-stranded RNA (dsRNA) genome that is packaged in a nonenveloped, icosahedral particle (46). Its 10 dsRNA segments encode 11 proteins, VP1 to VP7 (encoded by segments 1, 2, 3, 4, 6, 9, and 7, respectively), NS1 to SN3 (encoded by segments 5, 8, and 10, respectively), and NS3A (encoded by segment 10) (46). Two structural proteins, VP2 and VP5, form the outer layer of the virion particle and are responsible for cell attachment and virus entry (18, 31, 32), neutralizing epitope (14, 21), and virus virulence (36). Both of them are highly variable and generate 24 serotypes of the virus (44). The inner layers contain VP1, VP3, VP4, VP6, and VP7, and form the “core” of the BTV capsid. VP1 and VP6 are involved in RNA replication as the RNA-dependent RNA polymerase (54) and helicase/NTPase, respectively (49). VP7 forms the surface of the core and functions during the entry of the core into insect cells (44) and also can react with “core neutralizing” antibodies as a major serogroup-specific antigen (32, 44). These core proteins and two nonstructural proteins, NS1 and NS2, are thought to be relatively conservative, so that antigenic cross-reaction can take place between different BTV strains and serotypes, whereas NS3/N3a is more variable than the other nonstructural or core proteins (46).The genetic diversity and variation in sequences of different BTV genome segments were initially identified by RNA oligonucleotide fingerprint analysis of BTV field samples (47). Until now, reassortment and dynamic gene mutation, regarded as the key factors responsible for the genetic diversity of BTV, have been studied in details (46). The two mechanisms can result in both genetic drift and genetic shift and contribute to BTV evolution (47). It has been revealed that high-frequency genome segment reassortment occurs readily between different BTV serotypes (16). Thus, segment reassortment is an important factor in generation of genetic diversity in orbivirus populations in nature (45). In addition, it has been shown that homologous recombination can also play a role in the genetic diversity and evolution of some RNA viruses (24, 33) and bring on virulent variants of these viruses at last (8, 56). Although homologous recombination has been observed in rotavirus, a member of the Reoviridae (39, 40), it is still unknown whether the intragenic recombination can occur and play a role in the generation of genetic diversity in orbivirus populations.To determine whether homologous recombination shaped the evolution of BTV and to provide some insights into the recombination itself in the virus, we analyzed roughly 690 complete segments of BTV deposited in GenBank to see whether some of them underwent intragenic recombination event. Several BTV groups isolated at different time points and in different countries were found containing the same (or similar) mosaic segments, demonstrating that intragenic recombination had occurred in the field and that these viruses with mosaic segments had become prevailing strains. That is, intragenic recombination can play a potential role in generating genetic diversity of BTV and exert its influence on the change of BTV epidemiology.  相似文献   

20.
We present the assembly of the polymerase complex (procapsid) of a dsRNA virus from purified recombinant proteins. This molecular machine packages and replicates viral ssRNA genomic precursors in vitro. After addition of an external protein shell, these in vitro self-assembled viral core particles can penetrate the host plasma membrane and initiate a productive infection. Thus, a viral procapsid has been assembled and rendered infectious using purified components. Using this system, we have studied the mechanism of assembly of the common dsRNA virus shell and the incorporation of a symmetry mismatch within an icosahedral capsid. Our work demonstrates that this molecular machine, self-assembled under defined conditions in vitro, can function in its natural environment, the cell cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号