首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Three pyrenofurans, the pyreno[1,2-b]furan (FP1), the pyreno[2,1-b] furan (FP2) and the pyreno[4,5-b]furan (FP3) have been synthesized as analogues of the mutagenic and carcinogenic benzo(a)pyrene (FP1 and FP2) and of its non-carcinogenic isomer benzo(e)pyrene (FP3). For each of the pyrenofurans, the reactivity with DNA has been tested in presence of liver microsomes of rats induced with 3-methylcholanthrene. Fluorescence spectroscopy showed that only FP2 and FP3 which possess a "bay region" react with DNA. In both cases, metabolites bound to DNA have a fluorescence emission comparable to that of the "bay region" dihydrodiols obtained after the "in vitro" metabolism of initial molecules. FP2 is shown to react similarly to benzo(a)pyrene whereas the reactivity of FP3 is different from that of benzo(e)pyrene, in spite of their structural similarities. This is probably due to reasons of three-dimensional space configuration. The peculiar reactivity of FP3 is predicted by calculations of the bond order values.  相似文献   

5.
6.
The alkylating properties of pairs of syn- and anti-isomers of 2 diol-epoxides derived from benzo(a)pyrene (BP) and of 1 derived from benz(a)anthracene (BA) have been investigated. Of the anti-diol-epoxides, anti-BP 7,8-diol-9,10-oxide was the most reactive compound towards DNA, towards sodium p-nitrothiophenolate in a non-aqueous solvent system, and towards 4-(p-nitrobenzyl)pyridine in aqueous solution; anti-BP 9,10,-diol-7,8-oxide was of intermediate reactivity and anti-BA 8,9-diol-10,11-oxide was least reactive. The syn-diol-epoxides gave unsatisfactory results with DNA and 4-(p-nitrobenzyl)pyridine because of their rapid solvolysis in aqueous solution, but with sodium p-nitrothiophenolate showed the order of reactivity syn-BP 7,8-diol-9,10-oxide greater than syn-BA 8,9-diol-10,11-oxide greater than syn-BP 9,10-diol-7,8-oxide. The products of the reaction between diol-epoxides and nucleic acids were examined by Sephadex LH-20 chromatography followed by high-pressure liquid chromatography (HPLC) and the diol-epoxides were shown to react principally with the guanosine and adenosine moieties of RNA.  相似文献   

7.
8.
9.
10.
A biomonitoring study was conducted to simultaneously measure individual benzo(a)pyrene (BaP) exposure in 50 office employees, not occupationally exposed to polycyclic aromatic hydrocarbons (PAH), using personal samplers and the formation of (+) r-7, t-8-dihyroxy-t-9,t-10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BPDE) adducts to haemoglobin (BPDE-Hb) and serum albumin (BPDE-SA). The population enrolled was exposed to an average of 0.58 ± 0.46 ng BaP m-3 (mean ± SD). The concentration of BaP collected from smokers' samples was double that from non-smokers (P = 0.007). BPDE adducts to Hb and SA were quantified as BaP tetrols released from hydrolysis of macromolecules and measured by high-resolution gas chromatography-negative ion chemical ionization-mass spectrometry. BPDE-Hb adducts were detected in 16% of the population and BPDE-SA adducts in 28%. Smoking did not affect adduct formation. When BaP personal monitoring data were used as the criterion of exposure, no correlation was found with the presence and the levels of BPDE-Hb and BPDE-SA adducts. Undetected sources of PAH, such as the diet, might markedly alter the exposure profile depicted by individual air sampling and affect the frequency and levels of protein biomarkers. This is the first comparative analysis of BPDE-Hb and BPDE-SA adducts, providing reference values for these biomarkers in a general urban population. However it is difficult to establish which biomarkers would be the more relevant in assessing low BaP exposure, due to undetectable factors such as dietary PAHs, that might have influenced the results to some degree.  相似文献   

11.
A biomonitoring study was conducted to simultaneously measure individual benzo(a)pyrene (BaP) exposure in 50 office employees, not occupationally exposed to polycyclic aromatic hydrocarbons (PAH), using personal samplers and the formation of (+) r-7, t-8-dihyroxy-t-9,t-10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BPDE) adducts to haemoglobin (BPDE–Hb) and serum albumin (BPDE–SA). The population enrolled was exposed to an average of 0.58 ± 0.46 ng BaP m?3 (mean ± SD). The concentration of BaP collected from smokers' samples was double that from non-smokers (P = 0.007). BPDE adducts to Hb and SA were quantified as BaP tetrols released from hydrolysis of macromolecules and measured by high-resolution gas chromatography–negative ion chemical ionization–mass spectrometry. BPDE–Hb adducts were detected in 16% of the population and BPDE–SA adducts in 28%. Smoking did not affect adduct formation. When BaP personal monitoring data were used as the criterion of exposure, no correlation was found with the presence and the levels of BPDE–Hb and BPDE–SA adducts. Undetected sources of PAH, such as the diet, might markedly alter the exposure profile depicted by individual air sampling and affect the frequency and levels of protein biomarkers. This is the first comparative analysis of BPDE–Hb and BPDE–SA adducts, providing reference values for these biomarkers in a general urban population. However it is difficult to establish which biomarkers would be the more relevant in assessing low BaP exposure, due to undetectable factors such as dietary PAHs, that might have influenced the results to some degree.  相似文献   

12.
乳杆菌吸附苯并芘的特性   总被引:1,自引:0,他引:1  
[目的]探讨植物乳杆菌(Lactobacillus plantarum)121和戊糖乳杆菌(Lactobacillus pentosus)ML32的苯并芘吸附作用与机制.[方法]采用高效液相色谱检测菌体对苯并芘的吸附率.[结果]菌株121和ML32对苯并芘的吸附率分别为65.9%和64.9%,这种吸附特性与菌体活力无关,随培养时间延长、温度提高以及细胞浓度的上升而增加.菌株121和ML32的吸附率在pH 4和5时达到最大,分别为87.6%和89.0%.当培养液中Ca2+或Mg2+浓度大于0.05mol/L时,菌体吸附率与盐离子浓度呈正相关.苯洗脱会导致乳杆菌所吸附的苯并芘减少90%.经碱性蛋白酶、中性蛋白酶、溶菌酶及TCA和SDS等方法处理后,菌体吸附率上升,且不易被苯去除.在胆盐及胃酸环境下,两株菌的吸附率均提高至70%以上,而胰蛋白酶的存在仅对菌株121的吸附率有较大影响.[结论]两株乳杆菌可以通过吸附作用从环境中清除苯并芘,其吸附效果与细菌细胞壁的结构和组成有关.  相似文献   

13.
14.
r-7,c-10,t-8,t-9-Tetrahydroxybenzo(a)pyrene (7,10/8,9-tetrol), which is the principal hydrolysis product of r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene (anti-diol-epoxide), was resolved and measured by HPLC in organic extracts of incubations which contained induced rat liver microsomes and BP. Kinetic analyses showed that: (a) following a 5- to 7-min lag period, anti-diol-epoxide formation was linear, and (b) levels of anti-diol-epoxide formed were highly dependent upon the starting BP concentration. anti-Diol-epoxide production increased at starting BP concentrations of 0–12 μm and decreased in incubations containing 12–25 μm BP. However, between 25 and 100 μm BP, anti-diol-epoxide formation was stable at a level representing 65% of the peak production which occurred at a starting BP concentration of 12 μm. BP oxidation was competitively inhibited by (?)-trans-BP-7,8-dihydrodiol and about five times less effectively by the (+)-trans-BP-7,8-dihydrodiol. The inability of a severalfold excess of BP (25–100 μm) to totally inhibit BP-7,8-dihydrodiol oxidation was explained by the presence of a microsomal substrate compartment which was saturated at only 6–8 μm BP, the remaining BP present as aggregates in the aqueous compartment. Purification of microsomes by Sepharose 2B gel filtration after reaction with [3H]BP also indicated that BP-7,8-dihydrodiol was preferentially concentrated in the microsome compartment leading to a net increase in the ratio of BP-7,8-dihydrodiol to BP in the microsomal compartment, which favored BP-7,8-dihydrodiol oxidation to yield the biologically active anti-diol-epoxide.  相似文献   

15.
A single intraperitoneal injection of benzo(a)pyrene (BP) given 1, 2, or 3 days before an ip injection of Friend leukemia virus (FLV) significantly increased the leukemogenic effect of the virus in B10SJF1 mice. These hybrids are the offspring of C57BL/10 females and SJL/J males and are highly resistant to FLV leukemogenesis when the virus is injected alone.  相似文献   

16.
17.
Covalent binding of benzo(a)pyrene (BP) metabolites to DNA was investigated in hepatocytes and liver microsomes (MC-microsomes) isolated from 3-methylcholanthrene-treated rats. The major DNA adducts formed during BP metabolism in both hepatocytes and incubations of calf thymus DNA with MC-microsomes were adducts of anti and syn isomers of trans-7,8,-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (diol-epoxides) and of epoxide derivatives of BP-9-phenol (phenol-oxides). Diol-epoxide adducts predominated over phenol-oxide adducts in hepatocytes, while the reverse was found in microsomal incubations. In hepatocytes, both diol-epoxide and phenol-oxide adducts increased with increasing BP concentration; the ratio of diol-epoxide adduct to phenol-oxide adduct decreased from 6:1 to 3:1 between 30 and 100 μm BP. In microsomal incubations, decreases in DNA concentration or addition of the hepatocyte L15 medium produced larger decreases in phenol-oxide adducts than in diol-epoxide adducts. The effects of the inhibitors salicylamide, diethylmaleate, and 3,3,3,-trichloropropene oxide on formation of BP-DNA adducts are interpreted in terms of changes in precursor formation and metabolism and reductions in hepatocyte glutathione levels. Addition of 1.5 mg/ml exogenous DNA to hepatocyte incubations produced no change in covalent binding to cellular DNA, even though extracellular BP-DNA adducts accounted for 97% of the total adducts formed. Both the relative amounts of diol-epoxide and phenol-oxide adducts and the total adducts per milligram of DNA were indistinguishable with respect to extracellular and intracellular DNA. Modification of extracellular DNA by diol-epoxides was at least as efficient as modification of calf thymus DNA in incubations with MC-microsomes. It is concluded that BP diol-epoxides and phenol-oxides can leave the cell or enter the nucleus with equal facility but are more effective in binding to DNA in the cell in which they are generated.  相似文献   

18.
The capacity of oxidation of benzo(a)pyrene (BP) and its analog to be oxidized by peroxidases in several tissues has been studied. The kinetics of the horseradish peroxidase (HRP) oxidation of BP and 7,8-dihydro-7,8-dihydroxy benzo(a)pyrene (BP-7,8-diol) were examined. Effective ratios of H2O2 and HRP for catalytic oxidation were 13.74 for BP and 4.58 for BP-7,8-diol. The maximum ratio was approximately 90 for both hydrogen donors (BP and BP-7,8-diol) to the ES complex. The maximum ratio of oxidized BP and BP-7,8-diol to HRP was 5.7. Ks values for H2O2 were 1.68 and 6.35 microM for BP and BP-7,8-diol, respectively. The mean values of the rate constants, k5, for the oxidation of BP and BP-7,8-diol were 0.56 X 10(5) M-1 sec-1 and 4.1 X 10(5) M-1 sec-1, respectively, at low concentrations. At low concentrations a Hill plot of the oxidation of BP showed a negative value (nH = 0.5) and at high concentrations nH = 1.0. On the other hand, that of BP-7,8-diol showed positive cooperativeness (nH = 1.8). These oxidation reactions caused substrate (donor) inhibition at high concentrations. The inhibition constants, KA', were 9.8 and 5.65 microM for BP and BP-7,8-diol, respectively. The reactivity of the oxidation of BP-7,8-diol was five to six times larger than that of BP.  相似文献   

19.
Vanillic acid (VA) is found in high concentrations in various plants and used as traditional medicine for various diseases. The aim of the existing study is to illustrate the protective effects of VA against benzo(a)pyrene (B(a)P)‐induced lung cancer in Swiss albino mice. B(a)P (50 mg/kg b.wt.) was given orally to induce lung cancer in mice. The body weight, tumor incidence, carcinoembryonic antigen (CEA), neuron‐specific enolase (NSE), and enzymatic/nonenzymatic antioxidants (superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and glutathione) were estimated. Further histochemical investigation through hematoxylin and eosin staining was also carried out. B(a)P administered groups showed increased levels of serum pathological markers CEA, NSE along with reduced final body weight as well as decreased tissue enzymatic and nonenzymatic antioxidants activities, whereas VA treatment (200mg/kg/b.wt) along with B(a)P showed significantly reverted the above changes, which proves as prominent anticancer effects in experimentally induced lung cancer. Overall, these results suggest that VA has an efficient preventive action against B(a)P‐induced lung cancer, and this is attributed to its free‐radical scavenging antioxidant activities.  相似文献   

20.
The metabolism of (3H)-benzo(a)pyrene and the activities of enzymes involved in its metabolism were studied in rat lung and liver in vitamin A deficiency. Deficiency of vitamin A resulted a significant decrease in the overall metabolism of benzo(a)pyrene in the liver in vitro, whereas no significant difference was evident in the lung. The ethyl acetate-soluble metabolites of benzo(a)pyrene formed by lung and liver preparations were unaltered qualitatively by vitamin A deficiency. However, quantitative analysis revealed that vitamin A deficiency decreased the yield of dihydrodiols, quinones and phenols in liver, and dihydrodiols in lung. The hepatic cytochrome P-450 content, arylhydrocarbon hydroxylase and uridine diphosphate-glucuronosyl transferase activities were reduced, whereas glutathione S-transferase activity was increased in the vitamin A deficient animals. Contrary to this, pulmonary cytochrome P-450 content was above the control values (p less than 0.01) and no alteration in pulmonary arylhydrocarbon hydroxylase activity was observed in vitamin A deficient rats. Uridine diphosphate-glucuronosyltransferase and glutathione S-transferase activities were impaired in lung by inducing vitamin A deficiency. However, no significant difference was evident in the overall metabolism of benzo(a)pyrene by lung supernatants from the two groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号