首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
CXCR4-tropic (X4) variants are associated with faster disease progression than CCR5-tropic variants in HIV infection. We previously reported inhibition of CCR5 expression on U937 cells could protect the cells from HIV-1 infection. Here, we established recombinant adenoviruses containing anti-sense CXCR4 cDNA, to investigate its role in the protection of HIV entering into target cells. A fragment of 636 bp cDNA from CXCR4 mRNA was recombined into adenoviral vector and the recombinant adenovirus was obtained from AD-293 cells. The rates of CXCR4 expression on the MT4 cells infected with recombinant adenovirus were measured by FACS. The MT4 cells infected by recombinant adenovirus were challenged by T-tropic HIV-1 strains and then P24 antigen was assayed. The rate of expression of CXCR4 on MT4 cell infected with recombinant adenovirus was decreased from 42% to 1.12% at 24 h, and to 1.03%, 1.39%, and 1.23% at 48 h, 72 h and 10 days respectively. Compared with Ad-control cells, recombinant adenovirus infected MT4 cells produced much less P24 antigen after being challenged with HIV-1. Furthermore, the recombinant adenovirus had no effects on chemotactic activity and proliferation of the MT4 cells. In conclusion, recombinant adenoviruses containing anti-sense can inhibit CXCR4 expression and resist HIV-1 infection on MT4 cell lines.  相似文献   

3.
The HIV-1 envelope glycoprotein gp120 interacts consecutively with CD4 and CCR5 to mediate the entry of R5-HIV-1 strains into target cells. The N-terminus of CCR5, which contains several sulfated tyrosines, plays a critical role in gp120-CCR5 binding and, consequently, in viral entry. Here, we demonstrate that a tyrosine sulfated peptide, reproducing the entire N-terminal extracellular region of CCR5, its unsulfated analogue, and a point-mutated peptide are unable to inhibit R5-HIV-1 mediated infection, competing with the entire CCR5 in the formation of gp120-CD4-CCR5 complex. Surprisingly, these peptides show the capability of enhancing HIV-1 infection caused by X4 strains through the up-regulation of both CD4 and CXCR4 receptors.  相似文献   

4.
Bacterial LPS protects primary human macrophages from infection by CCR5-tropic HIV-1 isolates through the release of the CC chemokines RANTES and macrophage inflammatory protein-1 alpha and -1 beta. Here, we show that LPS also suppresses infection of macrophages by CXCR4-tropic HIV-1 isolates. A marked down-regulation of both CD4 and CXCR4 expression was associated with this effect. Furthermore, a soluble factor(s) released by macrophages upon LPS treatment inhibited infection with CXCR4-tropic HIV-1 isolate viruses in both macrophages and T lymphocytes. Infection of both cell types appeared to be blocked at the level of viral entry and was independent of stromal cell-derived factor-1, the only known natural ligand of CXCR4. Moreover, the suppressive effect of LPS was unrelated to the release of IFN-alpha and -beta, macrophage-derived chemokine, leukemia inhibitory factor, or TNF-alpha. These results suggest the existence of potent HIV-1 inhibitory factor(s), uncharacterized to date, released by activated cells of the mononuclear phagocytic system.  相似文献   

5.
The chemokine receptor CXCR4 interacts with a single endogenous chemokine, CXCL12, and regulates a wide variety of physiological and pathological processes including inflammation and metastasis development. CXCR4 also binds the HIV-1 envelope glycoprotein, gp120, resulting in viral entry into host cells. Therefore, CXCR4 and its ligands represent valuable drug targets. In this study, we investigated the inhibitory properties of synthetic peptides derived from CXCR4 extracellular loops (ECL1-X4, ECL2-X4 and ECL3-X4) towards HIV-1 infection and CXCL12-mediated receptor activation. Among these peptides, ECL1-X4 displayed anti-HIV-1 activity against X4, R5/X4 and R5 viruses (IC50 = 24 to 76 μM) in cell viability assay without impairing physiological CXCR4–CXCL12 signalling. In contrast, ECL2-X4 only inhibited X4 and R5/X4 strains, interfering with HIV-entry into cells. At the same time, ECL2-X4 strongly and specifically interacted with CXCL12, blocking its binding to CXCR4 and its second receptor, CXCR7 (IC50 = 20 and 100 μM). Further analysis using mutated and truncated peptides showed that ECL2 of CXCR4 forms multiple contacts with the gp120 protein and the N-terminus of CXCL12. Chemokine neutralisation was mainly driven by four aspartates and the C-terminal residues of ECL2-X4. These results demonstrate that ECL2 represents an important structural determinant in CXCR4 activation. We identified the putative site for the binding of CXCL12 N-terminus and provided new structural elements to explain the recognition of gp120 and dimeric CXCR4 ligands.  相似文献   

6.
Pentosan polysulfate as an inhibitor of extracellular HIV-1 Tat   总被引:5,自引:0,他引:5  
HIV-1 Tat protein, released from HIV-infected cells, may act as a pleiotropic heparin-binding growth factor. From this observation, extracellular Tat has been implicated in the pathogenesis of AIDS and of AIDS-associated pathologies. Here we demonstrate that the heparin analog pentosan polysulfate (PPS) inhibits the interaction of glutathione S-transferase (GST)-Tat protein with heparin immobilized to a BIAcore sensor chip. Competition experiments showed that Tat-PPS interaction occurs with high affinity (K(d) = 9.0 nm). Also, GST.Tat prevents the binding of [(3)H]heparin to GST.Tat immobilized to glutathione-agarose beads. In vitro, PPS inhibits GST.Tat internalization and, consequently, HIV-1 long terminal repeat transactivation in HL3T1 cells. Also, PPS inhibits cell surface interaction and mitogenic activity of GST.Tat in murine adenocarcinoma T53 Tat-less cells. In all assays, PPS exerts its Tat antagonist activity with an ID(50) equal to approximately 1.0 nm. In vivo, PPS inhibits the neovascularization induced by GST.Tat or by Tat-overexpressing T53 cells in the chick embryo chorioallantoic membrane. In conclusion, PPS binds Tat protein and inhibits its cell surface interaction, internalization, and biological activity in vitro and in vivo. PPS may represent a prototypic molecule for the development of novel Tat antagonists with therapeutic implications in AIDS and AIDS-associated pathologies, including Kaposi's sarcoma.  相似文献   

7.
To test the anti-human immunodeficiency virus type-1 (HIV-1) activity of 3,6,9,12-tetraazatetradecane-1,14-diylbis(zinc dithiocarbamate)-S,S'-dioxide (cyclic zinc-dithiocarbamate-S, S'-dioxide), MAGI and MAGIC-5 cells were used; the former express CXCR4 and the latter express both CXCR4 and CCR5, which are HIV-1 coreceptors. The compound markedly inhibited HIV-1 X4 (CXCR4-using) viral replication in both MAGI and MAGIC-5 cells. On the other hand, the replication of HIV-1 R5X4 (both CXCR4-and CCR5-using) in MAGI cells but not MAGIC-5 cells was inhibited by the compound. The compound was found to specifically inhibit HIV-1 (X4) envelope-mediated cell-to-cell fusion, binding of anti-CXCR4 monoclonal antibody (12G5) to CXCR4 expressed on the surface of cells, and calcium flux induced by stromal-derived factor-1alpha (SDF-1alpha) bound to CXCR4. The results suggest that the compound inhibited CXCR4-mediated HIV-1 infection by influencing to the HIV-1 coreceptor activity of CXCR4.  相似文献   

8.
9.
10.
The G-protein coupled receptor CXCR4 is a co-receptor for HIV-1 infection and is involved in signaling cell migration and proliferation. In a previous study of non-peptide, guanide-based CXCR4-binding compounds, spermine and spermidine phenylguanides inhibited HIV-1 entry at low micromolar concentrations. Subsequently, crystal structures of CXCR4 were used to dock a series of naphthylguanide derivatives of the polyamines spermidine and spermine. Synthesis and evaluation of the naphthylguanide compounds identified our best compound, spermine tris-1-naphthylguanide, which bound CXCR4 with an IC50 of 40 nM and inhibited the infection of TZM-bl cells with X4, but not R5, strains of HIV-1 with an IC50 of 50–100 nM.  相似文献   

11.
The hematopoietic compartments act as long-term reservoirs for human immunodeficiency virus type-1 (HIV-1). Although hematopoietic progenitor cells (HPCs) are rarely infectable, HPCs committed to the megakaryocytic lineage can be infected and support a productive infection by both the X4 and R5 strains of HIV-1. Indeed, in contrast to the CD34+ progenitors, the lineage-committed HPCs express high levels of the HIV-1 co-receptors, CXCR4 and CCR5. The HIV-1 transactivator (Tat) protein has been shown to alter co-receptor expression in T lymphocytes and macrophages. We hypothesized that Tat may regulate co-receptor expression in lineage-specific HPCs as well. We have monitored the effects of Tat protein on co-receptor expression and on lineage-specific differentiation, using the HPC cell line, K562. Butyric acid (BA)-induced erythroid differentiation in K562 cells was suppressed by 1-100 ng/ml of Tat, as evident from a 70-80% decrease in hemoglobin (Hb) production and a 10-30-fold decrease in glycophorin-A expression. However, Tat treatment enhanced phorbol myristate acetate (PMA)-induced megakaryocytic differentiation, as evident from a 180-210% increase in 3H-serotonin uptake and a 5-12-fold increase in CD61 expression. Tat did not significantly alter co-receptor expression in erythroid cells. However, Tat co-treatment profoundly effected both CXCR4 and CCR5 gene expression and protein levels in megakaryocytic cells. In PMA-stimulated cells, Tat increased CXCR4 and decreased in CCR5 expression, this was potentiated in cells chronically exposed to Tat. In conclusion, Tat protein suppresses erythroid and facilitates megakaryocytic differentiation of K562 cells. In megakaryocytic cells, Tat differentially effected CXCR4 and CCR5 expression. Because megakaryocytes may play a crucial role in HIV-1 infectivity in viral reservoirs, our findings implicate a role for Tat protein in dictating co-receptor usage in lineage-committed HPCs.  相似文献   

12.
Human immunodeficiency virus-1 (HIV-1) disease is characterized by a relentless decline in CD4(+) T cells, resulting in the development of AIDS. Extracellular Tat secreted from the HIV-1 infected cells, enters non-infected T cells to induce apoptosis. A number of mechanisms, none of which is mutually exclusive, have been attributed to the cell depletion property of Tat protein. In the present communication, we provide evidence that the cell-killing effect of Tat is mediated by the activation of p53 pathway via inhibition of SIRT1, an NAD(+)-dependent deacetylase belonging to class III histone deacetylases. This evidence is based on the following experimental facts reported herein: (1) Overexpression of Tat protein decreases both the deacetylase and promoter activity of SIRT1, (2) SIRT1 inhibition by Tat involves increased levels of acetylated p53 and (3) The activation of p53 leads to subsequent increases in the expression of p53 target genes, p21 and BAX.  相似文献   

13.
Epithelin/granulin growth factor is synthesized as a 593 amino acid precursor protein that contains 7.5 imperfectly conserved repeats of approximately 57 amino acids. Processed epithelin/granulin peptides have been isolated from vertebrate/invertebrate species and are growth factors implicated in epithelial and haemic cell function. Here they are identified as Human Immunodeficiency Virus (HIV) Tat binding proteins using the yeast two-hybrid assay. Intracellularly in yeast, mutation of selected cysteines in an epithelin/granulin dimeric repeat caused loss of binding to Tat exon 1. In vitro binding of HIV-1 and HIV-2 Tat to epithelin/granulin dimeric and monomeric repeats was also observed by GST-glutathione bead "pulldown" assays. Because Tat is actively secreted from HIV-infected cells and has been shown to serve as a mitogenic factor for angiogenesis and for Kaposi-like cells, our observations suggest that epithelin/granulin growth factors may function as biologically important extracellular Tat co-factors.  相似文献   

14.
MicroRNAs (miRs) are short endogenous RNAs that regulate gene expression by incomplete pairing with messenger RNAs. An increasing number of studies show that mammalian microRNAs play fundamental roles in various aspects of cellular function including differentiation, proliferation, and cell death. Recent findings demonstrating the presence of microRNAs in mature neuronal dendrites suggest their possible involvement in controlling local protein translation and synaptic function. HIV-1 Encephalopathy (HIVE) is a manifestation of HIV-1 infection that often results in neuronal damage and dysfunction. While neurons are rarely, if ever, infected by HIV-1, they are exposed to cytotoxic viral and cellular factors including the HIV-1 transactivating factor Tat. In this study, we show that Tat deregulates expression levels of selected microRNAs, including the neuronal mir-128, in primary cortical neurons. We further show that mir-128a inhibits expression of the pre-synaptic protein SNAP25, whereas the anti-mir-128a partially restores Tat/mir-128a-induced downregulation of SNAP25 expression. Altogether, our data provide a novel mechanism by which HIV-Tat perturbs neuronal activity.  相似文献   

15.
16.
The CXC chemokine CXCL12 and its cognate receptor CXCR4 play an important role in inflammation, human immunodeficiency virus (HIV) infection and cancer metastasis. The signal transduction and intracellular trafficking of CXCR4 are involved in these functions, but the underlying mechanisms remain incompletely understood. In the present study, we demonstrated that the CXCR4 formed a complex with the cytolinker protein plectin in a ligand-dependent manner in HEK293 cells stably expressing CXCR4. The glutathione-S-transferase (GST)-CXCR4 C-terminal fusion proteins co-precipitated with the full-length and the N-terminal fragments of plectin isoform 1 but not with the N-terminal deletion mutants of plectin isoform 1, thereby suggesting an interaction between the N-terminus of plectin and the C-terminus of CXCR4. This interaction was confirmed by confocal microscopic reconstructions showing co-distribution of these two proteins in the internal vesicles after ligand-induced internalization of CXCR4 in HEK293 cells stably expressing CXCR4. Knockdown of plectin with RNA interference (RNAi) significantly inhibited ligand-dependent CXCR4 internalization and attenuated CXCR4-mediated intracellular calcium mobilization and activation of extracellular signal regulated kinase 1/2 (ERK1/2). CXCL12-induced chemotaxis of HEK293 cells stably expressing CXCR4 and of Jurkat T cells was inhibited by the plectin RNAi. Moreover, CXCR4 tropic HIV-1 infection in MAGI (HeLa-CD4-LTR-Gal) cells was inhibited by the RNAi of plectin. Thus, plectin appears to interact with CXCR4 and plays an important role in CXCR4 signaling and trafficking and HIV-1 infection.  相似文献   

17.
To identify the cellular gene target for Tat, we performed gene expression profile analysis and found that Tat up-regulates the expression of the OGG1 (8-oxoguanine-DNA glycosylase-1) gene, which encodes an enzyme responsible for repairing the oxidatively damaged guanosine, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG). We observed that Tat induced OGG1 gene expression by enhancing its promoter activity without changing its mRNA stability. We found that the upstream AP-4 site within the OGG1 promoter is responsible and that Tat interacted with AP-4 and removed AP-4 from the OGG1 promoter by in vivo chromatin immunoprecipitation assay. Thus, Tat appears to activate OGG1 expression by sequestrating AP-4. Interestingly, although Tat induces oxidative stress known to generate 8-oxo-dG, which causes the G:C to T:A transversion, we observed that the amount of 8-oxo-dG was reduced by Tat. When OGG1 was knocked down by small interfering RNA, Tat increased the amount of 8-oxo-dG, thus confirming the role of OGG1 in preventing the formation of 8-oxo-dG. These findings collectively indicate the possibility that Tat may play a role in maintenance of the genetic integrity of the proviral and host cellular genomes by up-regulating OGG1 as a feed-forward mechanism.  相似文献   

18.
Chemokine-driven migration is accompanied by polarization of the cell body and of the intracellular signaling machinery. The extent to which chemokine receptors polarize during chemotaxis is currently unclear. To analyze the distribution of the chemokine receptor CXCR4 during SDF-1 (CXCL12)-induced chemotaxis, we retrovirally expressed a CXCR4-GFP fusion protein in the CXCR4-deficient human hematopoietic progenitor cell line KG1a. This KG1a CXCR4-GFP cell line showed full restoration of SDF-1 responsiveness in assays detecting activation of ERK1/2 phosphorylation, actin polymerization, adhesion to endothelium under conditions of physiological flow, and (transendothelial) chemotaxis. When adhered to cytokine-activated endothelium in the absence of SDF-1, CXCR4 did not localize to the leading edge of the cell but was uniformly distributed over the plasma membrane. In contrast, when SDF-1 was immobilized on cytokine-activated endothelium, the CXCR4-GFP receptors that were present on the cell surface markedly redistributed to the leading edge of migrating cells. In addition, CXCR4-GFP co-localized with lipid rafts in the leading edge of SDF-1-stimulated cells, at the sites of contact with the endothelial surface. Inhibition of lipid raft formation prevents SDF-1-dependent migration, internalization of CXCR4, and polarization to the leading edge of CXCR4, indicating that CXCR4 surface expression and signaling requires lipid rafts. These data show that SDF-1, immobilized on activated human endothelium, induces polarization of CXCR4 to the leading edge of migrating cells, revealing co-operativity between chemokine and substrate in the control of cell migration.  相似文献   

19.
20.
Almost all viral pathogens utilize a cytoskeleton for their entry and intracellular transport. In HIV-1 infection, binding of the virus to blood resting CD4 T cells initiates a temporal course of cortical actin polymerization and depolymerization, a process mimicking the chemotactic response initiated from chemokine receptors. The actin depolymerization has been suggested to promote viral intracellular migration through cofilin-mediated actin treadmilling. However, the role of the virus-mediated actin polymerization in HIV infection is unknown, and the signaling molecules involved remain unidentified. Here we describe a pathogenic mechanism for triggering early actin polymerization through HIV-1 envelope-mediated transient activation of the LIM domain kinase (LIMK), a protein that phosphorylates cofilin. We demonstrate that HIV-mediated LIMK activation is through gp120-triggered transient activation of the Rack-PAK-LIMK pathway, and that knockdown of LIMK through siRNA decreases filamentous actin, increases CXCR4 trafficking, and diminishes viral DNA synthesis. These results suggest that HIV-mediated early actin polymerization may directly regulate the CXCR4 receptor during viral entry and is involved in viral DNA synthesis. Furthermore, we also demonstrate that in resting CD4 T cells, actin polymerization can be triggered through transient treatment with a pharmacological agent, okadaic acid, that activates LIMK and promotes HIV latent infection of resting CD4 T cells. Taken together, our results suggest that HIV hijacks LIMK to control the cortical actin dynamics for the initiation of viral infection of CD4 T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号