首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The 15N isotope dilution technique and the N difference method were used to estimate N2 fixation by clover growing in a mixture with ryegrass, in a field experiment and a controlled environment experiment. Values obtained using N difference were approximately 25% lower than those estimated using 15N isotope dilution. In the field experiment there was a measured N benefit to grass growing with clover, equivalent to 42.7 kgN ha-1. The grass in the mixture had a lower atom %15N content and a higher N content than grass in a monoculture; therefore values for N2 fixation were different depending on choice of control plant i.e. monoculture or mixture grass. In the controlled environment experiment there were no significant differences between either the atom %15N contents or the N contents of monoculture grass and grass growing in a mixture with clover. It is concluded that there is a long term indirect transfer of N from clover to associated grass which can lead to errors in estimates of N2 fixation.  相似文献   

2.
Summary Transplants of white clover (Trifolium repens L.) were grown isolated from each other and in pairs placed at different distances apart. The paired plants developed asymmetrically and at the interface between paired clones both the density of nodes and of stolons appeared to reach ceiling values that were of the same order as those achieved in isolated clones. It is argued that the growth of plants of T. repens is controlled by the local conditions experienced by the plant parts and not by integrated growth of the whole. Transplants of three different genotypes of T. repens, which differed in growth form, were grown as neighbouring pairs and the calculated asymmetry of the plants was used to compare their mutual aggressivenes. The more compact (phalangeal) genotypes induced greater asymmetry in their neighbours than the more diffuse forms.  相似文献   

3.
Summary Five genotypes of Trifolium repens and Lolium perenne were collected as neighbouring pairs along a fertility gradient in a natural pasture. After vegetative multiplication, the 25 possible combinations of Lolium genotype x Trifolium genotype were planted in the greenhouse in order to investigate competition between the genotypes. The comparison of the five combinations whose individual components had been neighbours with the combinations of genotypes that had not coexisted before disclosed no difference in total biomass production over 7 months. However, the yield of Trifolium increased when grown with the Lolium genotype which had been its natural neighbour, while the latter showed a decrease in yield. This neighbour specificity existed even when carryover effects from the sampling site had been eliminated (preconditioning period of 18 months) and when native Rhizobium strains were not present (inoculation with a non-native strain). The complex pattern of neighbour specificity with time indicated the importance of environmental conditions for its outcome. These results are a further confirmation of positive effects on the growth of Trifolium repens when grown together with its natural neighbour. They are discussed in the context of coexistence and coevolution  相似文献   

4.
Three experiments are reported which examine the relative roles of host and Rhizobium genotypes as factors limiting clover (Trifolium repens L.) growth at low soil temperatures.In the first experiment un-nodulated clover and perennial ryegrass (Lolium perenne L.) were grown with non-limiting nitrate at root temperatures of 8, 10 and 12°C. The ryegrass had substantially better relative growth rates (RGR) than the clover with the biggest difference occurring at 8°C. Alterations in growth rate with temperature were more marked in clover than in ryegrass but the latter still produced several times more dry matter than clover at each temperature.In the subsequent experiments clover nodulated with different strains of rhizobia was grown with and without non-limiting additions of nitrate at root temperatures of 9, 12 and 15°C. Plants receiving nitrate generally produced more dry matter than those dependent upon Rhizobium for nitrogen but differences in yield between these treatments did not alter with temperature. This suggests that limitations imposed by nitrogen fixation are similar at both high and low temperatures. Indeed, there was some evidence that nitrogen limitations were rather more pronounced at the highest temperature. The first experiment clearly demonstrated that the clover genotype makes particularly poor use of nitrate at low root temperatures when compared to its common companion perennial ryegrass.It can be concluded that improvements in spring growth of clover will rest largely with alterations to the plant genotype and its ability to use combined nitrogen for growth at lower temperatures rather than with changes in rhizobia or any symbiotic characters.  相似文献   

5.
An aluminium (Al) tolerant genotype of white clover was compared with an Al susceptible genotype in artificial soil profiles in which exchangeable Al increased with depth. The tolerant genotype had a greater proportion of its root mass deeper in the soil than the susceptible genotype. Nitrogenase activity showed a similar pattern. Shoot Al concentration did not vary between the genotypes but root Al in the susceptible line was twice that in the tolerant genotype. Plant potassium content in the susceptible line was relatively less, probably in response to higher aluminium content.  相似文献   

6.
Genotypes of white clover that exhibited divergent responses to P were identified in a glasshouse pot trial. Six high P-responding genotypes were selected from previously identified high P-responding cultivars and 5 low P-responding genotypes were selected from previously identified low P-responding cultivars. These were crossed in a full diallel design without selfing and reciprocals were kept separate. The P-response of progeny lines was compared with parents. High P-response was dominant over low P-response with progeny from crosses between high and low P-response genotypes being similar to the high P-response parent. Reciprocal effects were not significant. The general combining abilities of high P-response genotypes were generally greater than that of the low P-response genotypes, although there were significant specific combining abilities. Narrow sense heritabilities for P response were moderate, 0.46 based on the linear coefficient and 0.33 based on the quadratic coefficient of the fitted response curves.The mode of inheritance, feasibility of manipulating differences in P response by breeding and future directions of this work are discussed.Deceased.Deceased.  相似文献   

7.
Summary Low yield in seed crops of perennial ryegrass is related to low fertilization efficiency and low temperature during anthesis. To study the effect of genotype and temperature on pollen performance, we conducted greenhouse experiments at controlled temperatures. Individual florets of four genotypes that are known to differ in seed production were hand pollinated at four temperatures (14°, 18°, 22°, 26° C) both in vivo and via a semiin-vitro method involving excised florets on agar. Pollen germination and tube growth were determined with UV-fluorescence microscopy and scored in six classes at 2 h after pollination in vitro and after 0.5, 2 and 5 h in vivo. In vitro, both genotype and temperature had a significant effect on the performance of self-pollen. Pollen tube growth increased with temperature. In cross-pollinations, the pistil parent had a significant effect on pollen tube growth, and there was also a significant pistil-by-temperature interaction. In vivo, genotype and temperature significantly affected pollen performance. The genotype-by-temperature interaction was only significant 5 h after pollination. One genotype with low seed yield was pseudoself-compatible and was a relatively poor mother after cross-pollination. The effects of genotype and temperature on the growth of self-pollen might be exploited in a breeding programme.A.G. Stephenson was on a sabbattical leave at SVP in 1987  相似文献   

8.
J. R. Caradus 《Plant and Soil》1992,146(1-2):209-217
Ninety eight white clover genotypes were cloned and grown in pots at two levels of phosphorus (P) supply in soil. After harvest the nitrogen (N) and P content of shoot (leaf, petiole and unrooted stolon), stolon and root tissue was determined. Broad sense heritabilities for %N, %P, and proportion of total N or P in each tissue type were calculated. Heritabilities ranged from 0.22 to 0.68. They were generally higher for %P than %N; and higher in shoot and stolon tissue than root tissue for %P, %N, and proportion of N or P. Level of P in which plants were grown had little effect on heritability values. Genotypes from bred cultivars differed from those collected from hill country pastures for plant size, and partitioning of N and P to shoot, stolon and root. Relationships between plant characters were examined to determine the consequences of selection.  相似文献   

9.
Summary Humidity, at the young nodes of white clover stolones, varied by enclosing nodes in the atmosphere above a range of saturated solutions, inhibited root initiation at 85% RH or less. The threshold humidity for root initiation increased to about 93% on young nodes subject to moisture stress or old nodes on well watered plants in which root initiation had been previously suppressed by low humidity.Roots at old nodes and at the three youngest on stolons were either subject to moisture stress or adequately watered. Growth of young roots and N2-fixation were more adversely affected by the direct effects of drought than by subjecting old roots to drought. Although old roots under stress affected new root growth and N2-fixation, length of roots and lateral root number were little affected. By contrast stolon growth was affected more by stress to old roots than to young nodes, although after 6 weeks the contribution made by young roots to stolon growth was almost as high as old roots.The data suggest that deep roots at old nodes will allow clover stolons to grow during drought due to the high acropetal movement of water but initiation of roots and functioning of young roots at the soil surface will be adversely affected, with possible implications on the persistence of clover.  相似文献   

10.
Elgersma  Anjo  Hassink  Jan 《Plant and Soil》1997,197(2):177-186
To increase our insight into the above- and belowground N flows in grass and grass-clover swards relations between crop and soil parameters were studied in a cutting trial with perennial ryegrass (Lolium perenne) monocultures and ryegrass–white clover (Trifolium repens) mixtures. The effects of clover cultivar on herbage yield, the amount of clover-derived nitrogen, apparent N transfer to companion grass, dynamics of N and organic matter in the soil were estimated.The grass monocultures had very low DM yields (<2.1 t ha-1) and a low N concentration in the harvested herbage. During 1992–1995 the annual herbage DM yield in the mixtures ranged from 7.0 to 14.3 t ha-1, the white clover DM yield from 2.4 to 11.2 t ha-1 and the mean annual clover content in the herbage DM harvested from 34 to 78%. Mixtures with the large-leaved clover cv. Alice yielded significantly more herbage and clover DM and had a higher clover content than mixtures with small/medium-leaved cvs. Gwenda and Retor. Grass cultivar did not consistently affect yield, botanical composition or soil characteristics.The apparent N2 fixation was very high, ranging from 150 to 545 kg N ha-1 in the different mixtures. For each tonne of clover DM in the harvested herbage 49 to 63 kg N was harvested, while the apparent N transfer from clover to grass varied between 55 and 113 kg N ha-1 year-1.The net N mineralization rate was lower under monocultures than under mixtures. The C mineralization and the amounts of C and N in active soil organic matter fractions were similar for monocultures and mixtures, but the C:N ratio of the active soil organic matter fractions were higher under grass than under mixtures. This explains the lower N mineralization under grass.  相似文献   

11.
Summary Plants of white clover (Trifolium repens) were grown under canopies of clover leaves floating on shallow glass tanks of water and their growth was compared with that of plants under canopies of black polythene leaves. The experimental design allowed the growth of the clover plants in canopy filtered light to be compared with that in unfiltered light at different intensities of Photosynthetically Active Radiation (P.A.R.). The effect of canopy filtered light was to exaggerate the effects of reduced P.A.R. especially in promoting petiole extension and inhibiting stolon branching. Two clones of white clover differed in their responses to P.A.R. and to light quality and there were significant interactions between the effects of the intensity of P.A.R. and type of shade. It is argued that it may be important for both ecologists and plant breeders to recognise the role of radiation quality in regulating the dynamics of pasture.  相似文献   

12.
A putative contribution of polyamines to the control of peptidase activity expression during re-growth was studied in source organs (roots and stolons) of defoliated white clover (Trifolium repens L.). Endopeptidase activity increased in roots during the first 6 days following complete defoliation, while exopeptidase expression seemed to be restricted to the early hours of re-growth. These changes correlated with an immediate 80% decline in the content of total free polyamines, mainly represented by the diamine cadaverine. The inhibitory capacities of cadaverine and spermine were tested on enzyme activity in vitro in order to elucidate whether the endogenous polyamine level was associated with the cut-induced endopeptidase expression. Cadaverine seemed to inhibit endopeptidase activity of stolons but not root endopeptidase activity. These data support the view that polyamines may play a role in the regulation of peptidase expression in source organs of white clover during post-clipping re-growth. The existence of different endopeptidase isoforms in roots and stolons is discussed in relation to the molecular mechanisms by which polyamines may regulate their activities.Abbreviations AP aminopeptidase - Cad cadaverine - CP carboxypeptidase - EP endopeptidase - PA(s) polyamine(s) - Spm spermine  相似文献   

13.
The ability of white clover (Trifolium repens L.) to undergo cold acclimation is an important determinant of its persistence in mixed swards since growth rate at low temperatures sustains higher clover contents at the start of spring. During a re-growth period following defoliation, a gradual exposure of the root system (cv. Grasslands Huia) led to some physiological and morphological changes of cold-adaptive significance, similar to those developed by clover ecotypes originating in northern areas of Europe. Thus, cold exposure of the root system resulted in small-leaved prostrate forms of white clover after one month of re-growth. Similarly, cold exposure increased the ability of plants to store nitrogen since the application of low temperatures to the root system enhanced soluble protein accumulation in roots and in stolons. More specifically, cold exposure of the roots induced gene expression of a vegetative storage protein (17.3 kDa VSP) in both organs. These results demonstrate that the root system of clover plants should be a site of perception of the low-temperature stimulus, and gave rise to the question of the transduction of the cold signal from the roots to the aerial parts. On the basis of this study and taking into account molecular aspects concerning the clover VSP, it is suggested that this protein could participate in cold acclimation in addition to its role in nitrogen storage.  相似文献   

14.
Effects of polyethylene glycol (PEG)-induced water stress on the activities of total leaf superoxide dismutase (SOD) and chloroplast SOD (including thylakoid-bound SOD and stroma SOD) are described in white clover (Trifolium repens L.) grown in solution culture from rooted cuttings. Both leaf SOD and chloroplast SOD activities were markedly enhanced with increasing concentration of PEG stress, generating osmotic potentials around the roots 0, −0.5, −1.0, −1.5 MPa. The effects increased with time up to 72 h. Chloroplast Fe-containing SOD represented about 30% of the total leaf SOD activity in the control plants and a significant increase in chloroplast SOD activity was found during the stress period. This accounted for about 35.5–71.1% of the total leaf SOD activity. The proportion of chloroplast SOD in total leaf SOD not only increased with the decreasing of osmotic potential, but also increased with incubation time. Furthermore, the increase in thylakoid-bound SOD activity was much higher than that of stroma SOD in chloroplast of plants under water stress. The enhanced chloroplastic SOD activity, especially thylakoid-bound SOD activity, demonstrated in Trifolium repens suggests that Fe-SOD located in chloroplasts play a more important role than cytosolic Cu/Zn-containing SODs in scavenging O2 .  相似文献   

15.
Summary Sodium nitrate applications ranging from 0.36 to 22.84 mM N were shown to depress rates of nodule formation and reduce total nitrogen fixation (acetylene reduction) in white clover plants grown in aseptic test tube culture.Low nitrate levels gave an initial depression in symbiotic activity but the reduction was of short duration and these treatments were subsequently associated with enhanced rates of nodule formation and nitrogen fixation. As a result, phenotypic variation appeared to be strongly differentially affected by the amount of nitrate present. A subsequent experiment suggested that much of the variation was a consequence of early enhancement of plant growth rates by low levels of nitrate followed by rapid depletion thus giving a transitory inhibitory effect. This was confirmed in a third experiment in which the range of nitrate concentration was held constant. Differential effects on variability in nodule formation and nitrogen fixation were then greatly reduced but there was still a residual level of plant-to-plant variation. The results have clear implications for selecting genetic variants capable of fixing di-nitrogen in the presence of combined N. The provision of a single limiting dose of combined nitrogen to a population containing individuals with inherently different growth rates can bring about variations in the phenotypic expression of symbiotic characters. These variations are unlikely to be based on genetic factors which have a direct and stable effect on nodule development and nitrogenase activity. The implications of the results for plant breeding are discussed.  相似文献   

16.
The effect of boron on the reproductive growth of four contrasting white clover cultivars was examined in a controlled environment and glasshouse experiment. Plants grown under a nutrient regime excluding boron and those receiving 0.5 mg/litre boron had fewer stolons, reproductive stolons and inflorescences than those receiving 1, 2 or 3 mg/litre. Inflorescences were also smaller and had fewer seeds per floret. A boron concentration of 1 mg/litre gave optimum reproductive growth, higher levels of boron giving no further increase. Peduncle length and nectar quantity, but not nectar quality, were also influenced by boron indicating a possible beneficial effect of this element on pollinator activity. Cultivars differed in both vegetative and reproductive growth. Cv. Gwenda, a small leaved cultivar, had more stolons but fewer inflorescences than cv. Menna and smaller inflorescences than cv. Olwen, a large leaved cultivar. Generally, these cultivars responded similarly to boron. The implications of these results for the reproductive growth of white clover are discussed.  相似文献   

17.
Ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) have contrasting responses to soil mineral N availability and clover has the ability to fix atmospheric N(2) symbiotically. It has been hypothesized that these differences are the key to understanding grass-clover coexistence and vegetative dynamics in pastures. However, the whole plant response of clover and ryegrass to mineral N availability has not been fully characterized and inter-cultivar variability in the N-handling dynamics of clover has not been assessed. A detailed experimental study to address these issues was undertaken. For all clover cultivars and ryegrass, mass specific mineral N uptake rates (of whole plants) were similar saturating functions of mineral N availability. For all clover cultivars total N assimilation rates, whole plant C : N ratios and root : shoot ratios were independent of mineral N availability. Clover growth rates were also independent of mineral N availability except for a slight (<10%) reduction at very low N availability levels. Specific N(2) fixation rate (whole plant) was precisely controlled to ensure fixation balanced the deficit between mineral N uptake and the total N assimilation required to maintain constant whole plant C : N ratio. There was always a deficit between N uptake and the total N assimilation required to maintain C : N ratio. Consequently, some N(2) fixation remained engaged even at high mineral N availability levels. All inter-cultivar variation in N(2) fixation dynamics could be attributed to variations in growth rate. Clover mass specific growth rate declined as plant size increased. Ryegrass specific growth rate, whole plant C : N ratio and root : shoot ratio were dependent on N availability. Increased N availability led to increased growth rate and decreased C : N and root : shoot ratios. Specific growth rate was also dependent on plant size, growth rate declining as plant size increased. It is concluded that clover inter-cultivar variation in field performance is unlikely to be a consequence of variation in N-handling characteristics. Inter-cultivar differences in growth rate are likely to be a much more important source of variation.  相似文献   

18.
The effect of competition between incompatible and compatible pollen grains on the seed production of white clover was studied. Stigmatic receptivity was also studied. A selection line of white clover that has red leaves was used as a pollen donor and as a genetic marker to allow determination of the pollen donor responsible for ovule fertilisation. Results show that incompatible pollen did not inhibit compatible pollen grains from fertilising ovules and producing seeds, although it did slightly impair seed yield. At temperatures of 20/10°C (day/night) stigmas of white clover remained receptive to additional pollination up to 32 h after an initial compatible pollination and 40 h after an incompatible pollination. The results imply that factors other than inadequate pollination and the self-incompatibility system are responsible for failure of white clover to attain its potential seed yield. Received: 31 August 1999 / Revision accepted: 28 February 2000  相似文献   

19.
20.
Flowers of white clover (Trifolium repens L.) are hermaphrodite and self-incompatible; their cross-pollination depends entirely on insect visitors, mainly bees (Apoidea). Because self-pollination of white clover occurs before flower anthesis, we determined whether selfing affected the pollination efficiency of a honeybee visit. We compared pollen deposition in emasculated and intact flowers following (1) a single honeybee visit, (2) open-pollination for a day and (3) enclosure in a cloth bag to prevent insect visits. In emasculated flowers, open-pollination resulted in more pollen deposited than after one visit (+30%) which is consistent with flowers being visited more than once by pollinators during the course of a day. On intact flowers, saturation of the stigma was achieved after the first visit of a honeybee (near 280 grains) because of self-pollination. Additional visits did not increase pollen deposits, but they improved pollen efficiency in terms of numbers of pollen tubes reaching the ovules. In such a context of easily saturated stigmas, self-pollen does not inhibit cross-pollen activity, but represents a constraint for pollination which demands multiple bee visits to each flower to achieve maximum fertilization. Received: 20 May 1997 / Accepted: 25 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号