首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
在人肝癌细胞7721中研究了酪氨酸蛋白激酶(TPK)和蛋白激酶C(PKC)的激活剂[分别为表皮生长因子(EGF)和佛波酯(PMA)]和各种蛋白激酶抑制剂对N-乙酰氨基葡萄糖转移酶V(GnT-V)活力的影响,以探讨TPK和PKC对GnT-V的调节。结果发现,EGF或PMA处理细胞48h后,GnT-V的活力明显增高;蛋白激酶的非特异性抑制剂槲皮素和染料木黄酮(genistein)在抑制TPK和PKC的同时,抑制GnT-V的基础活力,并完全阻断EGF或PMA对GnT-V的增高作用;TPK的特异性抑制剂Tyrphostin-25和PKC的特异性抑制剂D-鞘氨醇分别应用时,各自只能部分地取消EGF或PMA对GnT-V的诱导。但当Tyrphostin-25和D-鞘氨醇同时加入培养基中则可完全阻断EGF或PMA对GnT-V的诱导激活。蛋白质合成抑制剂环己亚胺和蛋白激酶抑制剂作用相仿,不但可抑制GnT-V的基础活力,也可完全消除EGF或PMA对GnT-V的激活。以上结果提示EGF或PMA通过蛋白激酶调节GnT-V的酶蛋白合成,并且GnT-V受到膜性TPK和PKC的双重调节,其中m-TPK较m-PKC更为重要。  相似文献   

3.
Melanoma cells which have been isolated from metastatic melanoma tissue are able to survive and proliferate in serum supplemented media. In contrast, normal human melanocytes require the presence of growth stimulators if they are to survive in culture. A tumor promotor, 12–0-tetradecanoyl-phorbol-13-acetate (TPA) and substances that increase intracellular levels of cyclic-adenosine-monophosphate (cAMP), such as cholera toxin or isobutylmethyl xanthine, have been widely used for this purpose. The phorbol diester receptor was shown in 1982 to be the phospholipid- and calcium-dependent enzyme protein kinase C (PKC). We therefore directed our studies to the role of PKC regulation in the growth of normal human melanocytes and their transformation. Our studies show that while melanoma cells are inhibited by TPA, the growth of normal melanocytes is stimulated in a dose-dependent manner. The inhibitor, 1-(5-isoquinolinesulfonyl)-2-methyl-piperizine dihydrochloride (H7), which has been found to be the most specific for PKC, had no effect on the growth of normal melanocytes, but inhibited the growth of melanoma cells in a dose-dependent manner. PKC was isolated from the membrane and cytosol of normal melanocytes and melanoma cells. The basal (resting) levels of PKC activity in normal melanocytes was low compared to that measured in melanoma cells, and after short-term (1 hour) treatment with TPA the PKC activity was greatest at the membrane, with the activity decreasing the cytosol. Upon prolonged (48 hours) treatment with TPA, this redistribution of activity continued in normal melanocytes and the total activity increased. In melanoma cells, however, the total PKC activity decreased, particularly in the membrane fraction. A difference in activity and distribution of the enzyme was also seen after short-term (1 hour) treatment with H7. There was very little effect seen on PKC in normal melanocytes; however, the effect on melanoma cells was similar to that seen after 48 hours of exposure to TPA with a decrease in total activity, particularly in the membrane fraction. These results indicate that the regulation of PKC, in particular its activation by TPA, is altered during the transformation of normal human melanocytes  相似文献   

4.
蛋白激酶C(Protein kinase C,PKC)是细胞内一类重要的Ser/Thr激酶,调控多种生命活动的信号转导过程,目前已发现了至少11种亚型,其结构有一定的保守性而又有所差别,导致其功能和调控的多样性。新合成的PKC一般需要经历活化茎环(Activation-loop,A-loop)、转角模体(Turn motif,TM)以及疏水模体(hydrophobic motif,HM)的程序性磷酸化过程才能成熟,获得进一步活化的功能。本文综述了近年来PKC的程序性磷酸化成熟以及活化的研究进展情况。  相似文献   

5.
Studies on a Cyclic Nucleotide-independent Protein Kinase and Its Proenzyme in Mammalian Tissues. I. Purification and Characterization of an Active Enzyme from Bovine Cerebellum (Takai, Y., Kishimoto, A., Inoue, M., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7603–7609)Direct Activation of Calcium-activated, Phospholipid-dependent Protein Kinase by Tumor-promoting Phorbol Esters (Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y. (1982) J. Biol. Chem. 257, 7847–7851)Yasutomi Nishizuka (1932–2004) was born in Ashiya-city, Japan. He attended Kyoto University and obtained his M.D. in 1957 and his Ph.D. in 1962, working with Journal of Biological Chemistry (JBC) Classic author Osamu Hayaishi (1). He then spent a year as a postdoctoral fellow at Rockefeller University with Fritz Lipmann (also featured in a JBC Classic (2)) before returning to Kyoto University to resume work with Hayaishi. During this time, Nishizuka studied the biosynthesis of nicotinamide adenine dinucleotide (NAD), the involvement of GTP in ribosomal protein translation, and ADP-ribosylation by diphtheria toxin.Open in a separate windowYasutomi NishizukaIn 1969, Nishizuka accepted the position of full professor and head of the department of biochemistry at the Kobe University School of Medicine. There, Nishizuka became interested in the role of protein kinases in the regulation of cell functions. This led to his discovery of a novel protein kinase, which he published in the first paper reprinted here as the JBC Classic. As Nishizuka reported in that paper, he and his colleagues partially purified the kinase from bovine cerebellum. They found that the enzyme was capable of phosphorylating histone and protamine and that it probably was produced from its precursor protein by a limited proteolytic reaction. The detailed properties of the proenzyme and its conversion to active protein kinase were reported in a subsequent JBC paper (3). Nishizuka named this new enzyme “protein kinase C (PKC).”A paper published by Nishizuka two years later in the JBC (4) showed that PKC was activated without limited proteolysis by a membrane-associated factor in the presence of a low concentration of Ca2+. In 1980, he published another paper in the JBC (5) showing that the membrane-associated factor was diacylglycerol, which suggested that the lipid could be a novel second messenger generated by receptor-stimulated phosphoinositide hydrolysis. Nishizuka validated this idea by showing that treating platelets with a combination of a Ca2+ ionophore and membrane-permeant short chain diacylglycerol mimicked stimulation by the aggregating agent thrombin (6). This discovery was a major advance in the understanding of cell signaling.Nishizuka and his colleagues then discovered that PKC is the biological target of tumor-promoting phorbol esters. At that time, it was well known that croton oil augmented carcinogenesis when it was applied at weekly intervals to the skin of mice in conjunction with a very dilute solution of benz[a]pyrene in acetone. The oil contained phorbol ester, a powerful tumor promoter, and caused a wide variety of cellular responses that were similar to those seen with hormones. Nishizuka speculated that the phorbol ester was producing diacylglycerol to activate PKC. However, upon further investigation, he realized that the phorbol ester contained a diacylglycerol-like structure and thus might activate PKC directly. In a series of experiments, published in the second JBC Classic reprinted here, Nishizuka was able to show that the phorbol ester activated PKC directly. This discovery showed that PKC was important for cell proliferation and cancer. It also established the use of phorbol esters as crucial tools for the manipulation of PKC activation in intact cells, eventually allowing the elucidation of the wide range of cellular processes regulated by this enzyme.This research laid the foundation for an enormous number of studies on the complex PKC family, many of them from Nishizuka''s group.In 1975, Nishizuka became president of the University of Kobe, a position that he held until 2001. He received numerous awards and honors for his research, including the Gairdner Foundation International Award (1988), the Alfred P. Sloan Jr. Prize (1988), the Japan Order of Culture (1988), the Albert Lasker Basic Medical Research Award (1989), the Kyoto Prize (1992), the Wolf Prize in Medicine (1995), the Jimenez Diaz Award (1995), and the Schering Prize (1995). He also served as a foreign member and honorary fellow of various academies, including the National Academies of Science, the Royal Society, l''Academie des Sciences, die Deutsche Akademie der Naturforscher Leopoldina, le Real Academia de Ciencias, the Asiatic Society, and the Japan Academy.1  相似文献   

6.
秦至臻  戚欣  李静 《生物磁学》2011,(15):2992-2995
蛋白激酶C(Proteinkinase C,PKc)是细胞内一类重要的Ser/Thr激酶,调控多种生命活动的信号转导过程,目前已发现了至少11种亚型,其结构有一定的保守性而又有所差别,导致其功能和调控的多样性。新合成的PKC一般需要经历活化茎环(Acti.vation-loop,A—loop)、转角模体(Tummotif,T1V1)以及疏水模体(hydrophobic motif,HM)的程序性磷酸化过程才能成熟,获得进一步活化的功能。本文综述了近年来PKC的程序性磷酸化成熟以及活化的研究进展情况。  相似文献   

7.
 本文由兔脑细胞质可溶部分分离纯化了蛋白激酶C,测得该酶分子量为79.2kD,最适pH为6.5,最适反应温度为20℃,热不稳定,即使在4℃下,24h就丧失活力50%,同时观察了蛋白激酶C的抑制剂H_7对酶活力的影响。  相似文献   

8.
蛋白激酶C研究的最新进展   总被引:9,自引:1,他引:8  
作为能使蛋白激酶C(PKC)活化的第二信使甘油二酯(DAG)不仅可由磷脂酰肌醇(PtdIns)水解产生,大量实验表明还可从磷脂酰胆碱(PC)水解而来,其中磷脂酶C(PLC)及磷脂酶D(PLD)参与了这一过程,磷脂酶A2(PLA2)的作用产物脂肪酸(FA)也能激活PKC.PKC至少有10种亚型,依据其活化方式可分三大类:典型PKC,新PKC和非典型PKC.PKC参与了基因表达的调控.  相似文献   

9.
A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF''s ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.Perinatal brain injury in the context of premature birth is a major cause of neonatal morbidity and mortality.1 Depending on the degree of prematurity, 15–20% of the affected newborns die during the postnatal period and ~25% of survivors suffer significant long-term disability including cerebral palsy, epilepsy and increased hyperactivity.2 Therapeutic approaches to counteract the disastrous cascades of neonatal brain injury have been proposed. Unfortunately, in premature infants at risk, no neuroprotective agent has proven safe and effective so far.3Secreted from developing embryos, PreImplantation Factor (PIF) can be detected in the maternal circulation during pregnancy,4, 5 and its presence has been correlated with live birth.5, 6, 7 PIF has been implicated in promoting embryo implantation through modulating maternal immune tolerance.5, 8, 9 Consistent with the immune function, a synthetic PIF analog (sPIF) of 15 amino acids (MVRIKPGSANKPSDD) that was subcutaneously administrated was able to both reverse and prevent paralysis through inhibiting neuroinflammation in a murine model of experimental autoimmune encephalomyelitis.10 The neuroprotective property of sPIF was further underscored by its ability to mitigate neuronal loss and microglial activation in a rat model of perinatal brain injury.11 The neuroprotective effects were attributed, at least in part, to sPIF''s ability to downregulate microRNA let-7 in the injured brain. Abundantly expressed in the central nervous system (CNS), let-7 released from dying cells during brain injury induces neuronal death, exacerbating CNS damage.12, 13 sPIF inhibited the biogenesis of let-7 in both neuronal and immune cells through Toll-like Receptor 4 (TLR4).11 As PIF imparts multitargeted effects,10 it is almost certain that inhibiting let-7 is not the only mechanism of PIF action.In search of additional mechanisms, we chose to focus on cyclic AMP-dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC). PKA/PKC signaling is downstream of TLR4,14, 15 and TLR4 was required for sPIF-induced neuroprotective effects.11 PKA/PKC are important signaling molecules in a variety of cellular functions, including cell growth and differentiation, neuronal plasticity and cellular response to hypoxia–ischemia.16, 17, 18, 19 Mechanistically, PKA/PKC activation leads to phosphorylation of serine and threonine residues on target proteins, thereby modulating protein stability, protein–protein interactions and catalytic activity.20 In the case of brain injury, activation of the PKA/PKC signaling pathways imparts neuroprotection by increasing expression of anti-apoptotic and neurotrophic molecules while reducing pro-apoptotic molecules in neurons.21, 22, 23 Not surprisingly, PKA/PKC pathways have been recognized as potent targets for neuroprotective strategies.In the current study, we have examined and revealed a novel mechanism of PIF action. sPIF confers neuroprotection in a rat model of perinatal brain injury by modulating PKA/PKC signaling, which is recapitulated in vitro using neuronal cells. Overall, our data support clinical translation of sPIF treatment for hypoxic–ischemic brain injuries.  相似文献   

10.
Eukaryotic cells are known to have an inducible or adaptive response that enhances radioresistance after a low priming dose of radiation. This radioadaptive response seems to present a novel cellular defense mechanism. However, its molecular processing and signaling mechanisms are largely unknown. Here, we studied the role of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in the expression of radioadaptive response in cultured mouse cells. Protein immunoblot analysis using isoform-specific antibodies showed an immediate activation of PKC-alpha upon X-irradiation as indicated by a translocation from cytosol to membrane. A low priming dose caused a prolonged translocation, while a nonadaptive high dose dramatically downregulated the total PKC level. Low-dose X-rays also activated the p38 MAPK. The activation of p38 MAPK and resistance to chromosome aberration formation were blocked by SB203580, an inhibitor of p38 MAPK, and Calphostin C, an inhibitor of PKC. Furthermore, it was demonstrated that p38 MAPK was physically associated with delta1 isoform of phospholipase C (PLC-delta1), which hydrolyzed phosphatidylinositol bisphosphate into diacylglycerol, an activator of PKC, and that SB203580 also blocked the activation of PKC-alpha. These results indicate the presence of a novel mechanism for coordinated regulation of adaptive response to low-dose X-rays by a nexus of PKC-alpha/p38 MAPK/PLC-delta1 circuitry feedback signaling pathway with its breakage operated by downregulation of labile PKC-alpha at high doses or excess stimuli.  相似文献   

11.
Considerable evidence indicates that the renal Na+,K+-ATPase is regulated through phosphorylation/dephosphorylation reactions by kinases and phosphatases stimulated by hormones and second messengers. Recently, it has been reported that amino acids close to the NH2-terminal end of the Na+,K+-ATPase α-subunit are phosphorylated by protein kinase C (PKC) without apparent effect of this phosphorylation on Na+,K+-ATPase activity. To determine whether the α-subunit NH2-terminus is involved in the regulation of Na+,K+-ATPase activity by PKC, we have expressed the wild-type rodent Na+,K+-ATPase α-subunit and a mutant of this protein that lacks the first thirty-one amino acids at the NH2-terminal end in opossum kidney (OK) cells. Transfected cells expressed the ouabain-resistant phenotype characteristic of rodent kidney cells. The presence of the α-subunit NH2-terminal segment was not necessary to express the maximal Na+,K+-ATPase activity in cell membranes, and the sensitivity to ouabain and level of ouabain-sensitive Rb+-transport in intact cells were the same in cells transfected with the wild-type rodent α1 and the NH2-deletion mutant cDNAs. Activation of PKC by phorbol 12-myristate 13-acetate increased the Na+,K+-ATPase mediated Rb+-uptake and reduced the intracellular Na+ concentration of cells transfected with wild-type α1 cDNA. In contrast, these effects were not observed in cells expressing the NH2-deletion mutant of the α-subunit. Treatment with phorbol ester appears to affect specifically the Na+,K+-ATPase activity and no evidence was observed that other proteins involved in Na+-transport were affected. These results indicate that amino acid(s) located at the α-subunit NH2-terminus participate in the regulation of the Na+,K+-ATPase activity by PKC. Received: 10 July 1996/Revised: 19 September 1996  相似文献   

12.
蛋白激酶C在血小板聚集中的作用   总被引:3,自引:0,他引:3  
利用 ̄(32)P-NaH2PO4标记猪血小板,以蛋白激酶C的40kD底物为蛋白激活的标志.用血小板激动剂在聚集浓度范围内处理血小板,结果表明,除了不能使猪血小板聚集的肾上腺素外,凝血酶等激动剂都使血小板40kD底物蛋白磷酸化明显增加,同时38kD,26kD蛋白质磷酸化也明显增加,且40kD底物磷酸化与血小板聚集有平行增加关系.蛋白激酶C在血小板聚集中可能起着重要的调节作用。  相似文献   

13.
Effect of Brain Ischemia on Protein Kinase C   总被引:7,自引:0,他引:7  
We examined the influence of brain ischemia on the activity and subcellular distribution of protein kinase C (PKC). Two different models of ischemic brain injury were used: postdecapitative ischemia in rat forebrain and transient (6-min) cerebral ischemia in gerbil hippocampus. In the rat forebrain model, at 5 and 15 min postdecapitation there was a steady decrease of total PKC activity to 60% of control values. This decrease occurred without changes in the proportion of the particulate to the soluble enzyme pools. Isolated rat brain membranes also exhibited a concomitant decrease of [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding with an apparent increase of the ligand affinity to the postischemic membranes. On the other hand, the ischemic gerbil hippocampus model displayed a 40% decrease of total PKC activity, which was accompanied by a relative increase of PKC activity in its membrane-bound form. This resulted in an increase in the membrane/total activity ratio, indicating a possible enzyme translocation from cytosol to the membranes after ischemia. Moreover, after 1 day of recovery, a statistically significant enhancement of membrane-bound PKC activity resulted in a further increase of its relative activity up to 162% of control values. In vitro experiments using a synaptoneurosomal particulate fraction were performed to clarify the mechanism of the rapid PKC inhibition observed in cerebral tissue after ischemia. These experiments showed a progressive, Ca(2+)-dependent, antiprotease-insensitive down-regulation of PKC during incubation. This down-regulation was significantly enhanced by prior phorbol (PDBu) treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), has been found recently to transform cultured astrocytes from flat, polygonal cells into stellate-shaped, process-bearing cells. Studies were conducted to determine the effect of PMA on protein phosphorylation in astrocytes and to compare this pattern of phosphorylation with that elicited by dibutyryl cyclic AMP (dbcAMP), an activator of the cyclic AMP-dependent protein kinase which also affects astrocyte morphology. Exposure to PMA increased the amount of 32P incorporation into several phosphoproteins, including two cytosolic proteins with molecular weights of 30,000 (pI 5.5 and 5.7), an acidic 80,000 molecular weight protein (pI 4.5) present in both the cytosolic and membrane fractions, and two cytoskeletal proteins with molecular weights of 60,000 (pI 5.3) and 55,000 (pI 5.6), identified as vimentin and glial fibrillary acidic protein, respectively. Effects of PMA on protein phosphorylation were not observed in cells depleted of protein kinase C. In contrast to the effect observed with PMA, treatment with dbcAMP decreased the amount of 32P incorporation into the 80,000 protein. Like PMA, treatment with dbcAMP increased the 32P incorporation into the proteins with molecular weights of 60,000, 55,000 and 30,000, although the magnitude of this effect was different. The effect of dbcAMP on protein phosphorylation was still observed in cells depleted of protein kinase C. The results suggest that PMA, via the activation of protein kinase C, can alter the phosphorylation of a number of proteins in astrocytes, and some of these same phosphoproteins are also phosphorylated by the cyclic AMP-dependent mechanisms.  相似文献   

15.
Many extracellular signals act via the Raf/MEK/ERK cascade in which kinetics, cell-cell variability, and sensitivity of the ERK response can all influence cell fate. Here we used automated microscopy to explore the effects of ERK-mediated negative feedback on these attributes in cells expressing endogenous ERK or ERK2-GFP reporters. We studied acute rather than chronic stimulation with either epidermal growth factor (ErbB1 activation) or phorbol 12,13-dibutyrate (PKC activation). In unstimulated cells, ERK-mediated negative feedback reduced the population-average and cell-cell variability of the level of activated ppERK and increased its robustness to changes in ERK expression. In stimulated cells, negative feedback (evident between 5 min and 4 h) also reduced average levels and variability of phosphorylated ERK (ppERK) without altering the “gradedness” or sensitivity of the response. Binning cells according to total ERK expression revealed, strikingly, that maximal ppERK responses initially occur at submaximal ERK levels and that this non-monotonic relationship changes to an increasing, monotonic one within 15 min. These phenomena occur in HeLa cells and MCF7 breast cancer cells and in the presence and absence of ERK-mediated negative feedback. They were best modeled assuming distributive (rather than processive) activation. Thus, we have uncovered a novel, time-dependent change in the relationship between total ERK and ppERK levels that persists without negative feedback. This change makes acute response kinetics dependent on ERK level and provides a “gating” or control mechanism in which the interplay between stimulus duration and the distribution of ERK expression across cells could modulate the proportion of cells that respond to stimulation.  相似文献   

16.
Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles and potential substrates.  相似文献   

17.
Protein Kinase C Activity in Rat Brain Cortex   总被引:3,自引:3,他引:0  
The procedure used to obtain cerebral tissue for analysis of protein kinase C (PKC) activity may affect the subcellular distribution of the enzyme. We compared different methods of tissue preparation and found that the proportion of PKC activity associated with the particulate fraction of the cerebral cortex was only 30% when the brain was frozen in situ while the animal was on life support or after decapitation followed by delayed freezing. Other methods of obtaining cerebral tissue resulted in 49-56% of the PKC activity in the particulate fraction. Freezing per se had no apparent effect on the activity or subcellular distribution of PKC. In addition, whenever the particulate PKC activity was high (greater than 48%), there was also a significant increase in the proportion of particulate protein (from 51 to approximately 63%, p less than 0.05).  相似文献   

18.
植物蛋白激酶C初探陈星,肖尊安,张崇浩(北京师范大学生物系,北京100875)关键词:绿豆黄化幼苗,猕猴桃子叶愈伤组织,蛋白激酶C蛋白激酶C(proteinkinaseC,PKC)是一种哺乳动物中普遍存在的蛋白激酶,在肌醇磷脂双信使信号系统中,它占有...  相似文献   

19.
Scaffold proteins localize two or more signaling enzymes in close proximity to their downstream effectors. A-kinase-anchoring proteins (AKAPs) are a canonical family of scaffold proteins known to bind protein kinase A (PKA) and other enzymes. Several AKAPs have been shown to accelerate, amplify, and specify signal transduction to dynamically regulate numerous cellular processes. However, there is little theory available to mechanistically explain how signaling on protein scaffolds differs from solution biochemistry. In our present study, we propose a novel kinetic mechanism for enzymatic reactions on protein scaffolds to explain these phenomena, wherein the enzyme-substrate-scaffold complex undergoes stochastic state switching to reach an active state. This model predicted anchored enzymatic reactions to be accelerated, amplified, and insulated from inhibition compared with those occurring in solution. We exploited a direct interaction between protein kinase C (PKC) and AKAP7α as a model to validate these predictions experimentally. Using a genetically encoded PKC activity reporter, we found that both the strength and speed of substrate phosphorylation were enhanced by AKAP7α. PKC tethered to AKAP7α was less susceptible to inhibition from the ATP-competitive inhibitor Gö6976 and the substrate-competitive inhibitor PKC 20-28, but not the activation-competitive inhibitor calphostin C. Model predictions and experimental validation demonstrated that insulation is a general property of scaffold tethering. Sensitivity analysis indicated that these findings may be applicable to many other scaffolds as well. Collectively, our findings provide theoretical and experimental evidence that scaffold proteins can amplify, accelerate, and insulate signal transduction.  相似文献   

20.
Abstract: Protein kinase C (PKC) is activated by 1,2- sn -diacylglycerol (DAG), the source of which can either be phosphatidylinositol bisphosphate or phosphatidylcholine. Here, we show that monogalactosyl diglyceride (MGDG), a minor galactolipid present in oligodendrocytes (OLs) and myelin, which is designated as a marker for myelination, can enhance OL PKC activity. Based on different calcium and substrate requirements we conclude that MGDG and DAG activate different isoforms of PKC group A: MGDG primarily stimulates PKC-α, and DAG primarily activates PKC-γ. The presence of these PKC isoforms in OLs was confirmed by western blotting, whereas PKC-β was only weakly stained, if at all. Addition of MGDG to the culture medium provided a higher density of regenerating OL fibers, which was not observed when membrane-permeable DAG was used. These findings indicate that MGDG can modulate the OL PKC activity and that PKC-α is the major PKC isoform involved in OL process formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号