首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
Insulin-stimulated glucose uptake and incorporation of glucose into skeletal muscle glycogen contribute to physiological regulation of blood glucose concentration. In the present study, glucose handling and insulin signaling in isolated rat muscles with low glycogen (LG, 24-h fasting) and high glycogen (HG, refed for 24 h) content were compared with muscles with normal glycogen (NG, rats kept on their normal diet). In LG, basal and insulin-stimulated glycogen synthesis and glycogen synthase activation were higher and glycogen synthase phosphorylation (Ser(645), Ser(649), Ser(653), Ser(657)) lower than in NG. GLUT4 expression, insulin-stimulated glucose uptake, and PKB phosphorylation were higher in LG than in NG, whereas insulin receptor tyrosyl phosphorylation, insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity, and GSK-3 phosphorylation were unchanged. Muscles with HG showed lower insulin-stimulated glycogen synthesis and glycogen synthase activation than NG despite similar dephosphorylation. Insulin signaling, glucose uptake, and GLUT4 expression were similar in HG and NG. This discordant regulation of glucose uptake and glycogen synthesis in HG resulted in higher insulin-stimulated glucose 6-phosphate concentration, higher glycolytic flux, and intracellular accumulation of nonphosphorylated 2-deoxyglucose. In conclusion, elevated glycogen synthase activation, glucose uptake, and GLUT4 expression enhance glycogen resynthesis in muscles with low glycogen. High glycogen concentration per se does not impair proximal insulin signaling or glucose uptake. "Insulin resistance" is observed at the level of glycogen synthase, and the reduced glycogen synthesis leads to increased levels of glucose 6-phosphate, glycolytic flux, and accumulation of nonphosphorylated 2-deoxyglucose.  相似文献   

2.
Insulin stimulates glucose uptake in 3T3-L1 adipocytes in part by causing endoproteolytic cleavage of TUG (tether containing a ubiquitin regulatory X (UBX) domain for glucose transporter 4 (GLUT4)). Cleavage liberates intracellularly sequestered GLUT4 glucose transporters for translocation to the cell surface. To test the role of this regulation in muscle, we used mice with muscle-specific transgenic expression of a truncated TUG fragment, UBX-Cter. This fragment causes GLUT4 translocation in unstimulated 3T3-L1 adipocytes. We predicted that transgenic mice would have GLUT4 translocation in muscle during fasting. UBX-Cter expression caused depletion of PIST (PDZ domain protein interacting specifically with TC10), which transmits an insulin signal to TUG. Whereas insulin stimulated TUG proteolysis in control muscles, proteolysis was constitutive in transgenic muscles. Fasting transgenic mice had decreased plasma glucose and insulin concentrations compared with controls. Whole-body glucose turnover was increased during fasting but not during hyperinsulinemic clamp studies. In muscles with the greatest UBX-Cter expression, 2-deoxyglucose uptake during fasting was similar to that in control muscles during hyperinsulinemic clamp studies. Fasting transgenic mice had increased muscle glycogen, and GLUT4 targeting to T-tubule fractions was increased 5.7-fold. Whole-body oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure were increased by 12–13%. After 3 weeks on a high fat diet, the decreased fasting plasma glucose in transgenic mice compared with controls was more marked, and increased glucose turnover was not observed; the transgenic mice continued to have an increased metabolic rate. We conclude that insulin stimulates TUG proteolysis to translocate GLUT4 in muscle, that this pathway impacts systemic glucose homeostasis and energy metabolism, and that the effects of activating this pathway are maintained during high fat diet-induced insulin resistance in mice.  相似文献   

3.
Adipose tissue plays an important role in glucose homeostasis and affects insulin sensitivity in other tissues. In obesity and type 2 diabetes, glucose transporter 4 (GLUT4) is downregulated in adipose tissue, and glucose transport is also impaired in muscle. To determine whether overexpression of GLUT4 selectively in adipose tissue could prevent insulin resistance when glucose transport is impaired in muscle, we bred muscle GLUT4 knockout (MG4KO) mice to mice overexpressing GLUT4 in adipose tissue (AG4Tg). Overexpression of GLUT4 in fat not only normalized the fasting hyperglycemia and glucose intolerance in MG4KO mice, but it reduced these parameters to below normal levels. Glucose infusion rate during a euglycemic clamp study was reduced 46% in MG4KO compared with controls and was restored to control levels in AG4Tg-MG4KO. Similarly, insulin action to suppress hepatic glucose production was impaired in MG4KO mice and was restored to control levels in AG4Tg-MG4KO. 2-deoxyglucose uptake during the clamp was increased approximately twofold in white adipose tissue but remained reduced in skeletal muscle of AG4Tg-MG4KO mice. AG4Tg and AG4Tg-MG4KO mice have a slight increase in fat mass, a twofold elevation in serum free fatty acids, an approximately 50% increase in serum leptin, and a 50% decrease in serum adiponectin. In MG4KO mice, serum resistin is increased 34% and GLUT4 overexpression in fat reverses this. Overexpression of GLUT4 in fat also reverses the enhanced clearance of an oral lipid load in MG4KO mice. Thus overexpression of GLUT4 in fat reverses whole body insulin resistance in MG4KO mice without restoring glucose transport in muscle. This effect occurs even though AG4Tg-MG4KO mice have increased fat mass and low adiponectin and is associated with normalization of elevated resistin levels.  相似文献   

4.
HIV protease inhibitors acutely block glucose transporters (GLUTs) in vitro, and this may contribute to altered glucose homeostasis in vivo. However, several GLUT-independent mechanisms have been postulated. To determine the contribution of GLUT blockade to protease inhibitor-mediated glucose dysregulation, the effects of ritonavir were investigated in mice lacking the insulin-sensitive glucose transporter GLUT4 (G4KO). G4KO and control C57BL/6J mice were administered ritonavir or vehicle at the start of an intraperitoneal glucose tolerance test and during hyperinsulinemic-euglycemic clamps. G4KO mice exhibited elevated fasting blood glucose compared with C57BL/6J mice. Ritonavir impaired glucose tolerance in control mice but did not exacerbate glucose intolerance in G4KO mice. Similarly, ritonavir reduced peripheral insulin sensitivity in control mice but not in G4KO mice. Serum insulin levels were reduced in vivo in ritonavir-treated mice. Ritonavir reduced serum leptin levels in C57BL/6J mice but had no effect on serum adiponectin. No change in these adipokines was observed following ritonavir treatment of G4KO mice. These data confirm that a primary effect of ritonavir on peripheral glucose disposal is mediated through direct inhibition of GLUT4 activity in vivo. The ability of GLUT4 blockade to contribute to derangements in the other molecular pathways that influence insulin sensitivity remains to be determined.  相似文献   

5.
G protein-coupled receptor kinases (GRKs) represent a class of proteins that classically phosphorylate agonist-activated G protein-coupled receptors, leading to uncoupling of the receptor from further G protein activation. Recently, we have reported that the heterotrimeric G protein alpha-subunit, Galphaq/11, can mediate insulin-stimulated glucose transport. GRK2 contains a regulator of G protein signaling (RGS) domain with specificity for Galphaq/11. Therefore, we postulated that GRK2 could be an inhibitor of the insulin signaling cascade leading to glucose transport in 3T3-L1 adipocytes. In this study, we demonstrate that microinjection of anti-GRK2 antibody or siRNA against GRK2 increased insulin-stimulated insulin-responsive glucose transporter 4 (GLUT4) translocation, while adenovirus-mediated overexpression of wild-type or kinase-deficient GRK2 inhibited insulin-stimulated GLUT4 translocation as well as 2-deoxyglucose uptake. Importantly, a mutant GRK2 lacking the RGS domain was without effect. Taken together, these results indicate that through its RGS domain endogenous GRK2 functions as a negative regulator of insulin-stimulated glucose transport by interfering with Galphaq/11 signaling to GLUT4 translocation. Furthermore, inhibitors of GRK2 can lead to enhanced insulin sensitivity.  相似文献   

6.
Expression of GLUT4 in fast-twitch skeletal muscle fibers of GLUT4 null mice (G4-MO) normalized glucose uptake in muscle and restored peripheral insulin sensitivity. GLUT4 null mice exhibit altered carbohydrate and lipid metabolism in liver and skeletal muscle. To test the hypothesis that increased glucose utilization by G4-MO muscle would normalize the changes seen in the GLUT4 null liver, serum metabolites and hepatic metabolism were compared in control, GLUT4 null, and G4-MO mice. The fed serum glucose and triglyceride levels of G4-MO mice were similar to those of control mice. In addition, the alternations in liver metabolism seen in GLUT4 nulls including increased GLUT2 expression and fatty acid synthesis accompanied by an increase in the oxidative arm of the pentose phosphate pathway were absent in G4-MO mice. The transgene used for GLUT4 restoration in muscle was specific for fast-twitch muscle fibers. The mitochondria hypertrophy/hyperplasia in all GLUT4 null skeletal muscles was absent in transgene-positive extensor digitorum longus muscle but present in transgene-negative soleus muscle of G4-MO mice. Results of this study suggest that the level of muscle GLUT4 expression influences mitochondrial biogenesis. These studies also demonstrate that the type and amount of substrate that muscle takes up and metabolizes, determined in part by GLUT4 expression levels, play a major role in directing hepatic carbohydrate and lipid metabolism.  相似文献   

7.
Type 2 diabetes (T2D) mellitus and Alzheimer's disease (AD) are two prevalent diseases with comparable pathophysiological features and genetic predisposition. Patients with AD are more susceptible to develop T2D. However, the molecular mechanism linking AD and T2D remains elusive. In this study, we have generated a new mouse model to test the hypothesis that AD would prompt the onset of T2D in mice. To test our hypothesis, we crossed Alzheimer APPswe/PS1dE9 (APP/PS1) transgenic mice with mice partially deficient in leptin signaling (db/+). Body weight, plasma glucose, and insulin levels were monitored. Phenotypic characterization of glucose metabolism was performed using glucose and insulin tolerance tests. β-Cell mass, islet volume, and islet number were analyzed by histomorphometry. APP/PS1 coexpression in mice with intact leptin receptor signaling did not show any metabolic perturbations in glucose metabolism or insulin sensitivity. In contrast, APP/PS1 coexpression in db/+ mice resulted in nonfasting hyperglycemia, hyperinsulinemia, and hypercholesterolemia without changes in body weight. Conversely, fasting blood glucose and cholesterol levels remained unchanged. Coinciding with altered glucose metabolism, APP/PS1 coexpression in db/+ mice resulted in glucose intolerance, insulin resistance, and impaired insulin signaling. In addition, histomorphometric analysis of pancreata revealed augmented β-cell mass. Taken together, these findings provide experimental evidence to support the notion that aberrant Aβ production might be a mechanistic link underlying the pathology of insulin resistance and T2D in AD.  相似文献   

8.
The complex imprinted Gnas locus encodes several gene products including G(s)alpha, the ubiquitously expressed G protein alpha-subunit required for receptor-stimulated cAMP generation, and the neuroendocrine-specific G(s)alpha isoform XLalphas. XLalphas is only expressed from the paternal allele, whereas G(s)alpha is biallelically expressed in most tissues. XLalphas knock-out mice (Gnasxl(m+/p-)) have poor suckling and perinatal lethality, implicating XLalphas as critical for postnatal feeding. We have now examined the metabolic phenotype of adult Gnasxl(m+/p-) mice. Gnasxl(m+/p-) mice had reduced fat mass and lipid accumulation in adipose tissue, with increased food intake and metabolic rates. Gene expression profiling was consistent with increased lipid metabolism in adipose tissue. These changes likely result from increased sympathetic nervous system activity rather than adipose cell-autonomous effects, as we found that XLalphas is not normally expressed in adult adipose tissue, and Gnasxl(m+/p-) mice had increased urinary norepinephrine levels but not increased metabolic responsiveness to a beta3-adrenergic agonist. Gnasxl(m+/p-) mice were hypolipidemic and had increased glucose tolerance and insulin sensitivity. The similar metabolic profile observed in some prior paternal Gnas knock-out models results from XLalphas deficiency (or deficiency of the related alternative truncated protein XLN1). XLalphas (or XLN1) is a negative regulator of sympathetic nervous system activity in mice.  相似文献   

9.
10.
The purpose of this study was to determine the influence of insulin receptor substrate-1 (IRS-1) expression on GLUT1 and GLUT4 glucose transporter protein abundance, contraction-stimulated glucose uptake, and contraction-induced glycogen depletion by skeletal muscle. Mice (6 months old) from three genotypes were studied: wild-type (IRS-1(+/+)), heterozygous (IRS-1(+/-)) for the null allele, and IRS-1 knockouts (IRS-1(-/-)) lacking a functional IRS-1 gene. In situ muscle contraction was induced (electrical stimulation of sciatic nerve) in one hindlimb using contralateral muscles as controls. Soleus and extensor digitorum longus were dissected and 2-deoxyglucose uptake was measured in vitro. 2-Deoxyglucose uptake was higher in basal muscles (no contractions) from IRS-1(-/-) vs. both other genotypes. Contraction-stimulated 2-deoxyglucose uptake and glycogen depletion did not differ among genotypes. Muscle IRS-1 protein was undetectable for IRS-1(-/-) mice, and values were approximately 40 % lower in IRS-1(+/-) than in IRS-1(+/+) mice. No difference was found in IRS-1(+/+) compared to IRS-1(-/-) groups regarding muscle abundance of GLUT1 and GLUT4. Substantial reduction or elimination of IRS-1 did not alter the hallmark effects of contractions on muscle carbohydrate metabolism--activation of glucose uptake and glycogen depletion.  相似文献   

11.
Previous work suggests that normal GLUT4 content is sufficient for increases in muscle glucose uptake (MGU) during exercise because GLUT4 overexpression does not increase exercise-stimulated MGU. Instead of glucose transport, glucose phosphorylation is a primary limitation of exercise-stimulated MGU. It was hypothesized that a partial ablation of GLUT4 would not impair exercise-stimulated MGU when glucose phosphorylation capacity is normal but would do so when glucose phosphorylation capacity was increased. Thus, C57BL/6J mice with hexokinase II (HKII) overexpression (HK(Tg)), a GLUT4 partial knock-out (G4(+/-)), or both (HK(Tg) + G4(+/-)) and wild-type (WT) littermates were implanted with carotid artery and jugular vein catheters for sampling and infusions at 4 months of age. After a 7-day recovery, 5-h fasted mice remained sedentary or ran on a treadmill at 0.6 mph for 30 min (n = 9-12 per group) and received a bolus of 2-deoxy[3H]glucose to provide an index of MGU (Rg). Arterial blood glucose and plasma insulin concentrations were similar in WT, G4(+/-), HKTg, and HKTg + G4(+/-) mice. Sedentary Rg values were the same in all genotypes in all muscles studied, confirming that glucose transport is a significant barrier to basal glucose uptake. Gastrocnemius and soleus Rg were greater in exercising compared with sedentary mice in all genotypes. During exercise, G4(+/-) mice had a marked increase in blood glucose that was corrected by the addition of HK II overexpression. Exercise Rg (micromol/100g/min) was not different between WT and G4(+/-) mice in the gastrocnemius (24 +/- 5 versus 21 +/- 2) or the soleus (54 +/- 6 versus 70 +/- 7). In contrast, the enhanced exercise Rg observed in HKTg mice compared with that in WT mice was absent in HKTg + G4(+/-) mice in both the gastrocnemius (39 +/- 7 versus 22 +/- 6) and the soleus (98 +/- 13 versus 65 +/- 13). Thus, glucose transport is not a significant barrier to exercise-stimulated MGU despite a 50% reduction in GLUT4 content when glucose phosphorylation capacity is normal. However, when glucose phosphorylation capacity is increased by HK II overexpression, GLUT4 availability becomes a marked limitation to exercise-stimulated MGU.  相似文献   

12.
Muscle glucose uptake (MGU) is determined by glucose delivery, transport, and phosphorylation. C57Bl/6J mice overexpressing GLUT4, hexokinase II (HK II), or both were used to determine the barriers to MGU. A carotid artery and jugular vein were catheterized for arterial blood sampling and venous infusions. Experiments were conducted in conscious mice approximately 7 days after surgery. 2-Deoxy-[3H]glucose was administered during rest or treadmill exercise to calculate glucose concentration-dependent (Rg) and -independent (Kg) indexes of MGU. Compared with wild-type controls, GLUT4-overexpressing mice had lowered fasting glycemia (165 +/- 6 vs. 115 +/- 6 mg/dl) and increased Rg by 230 and 166% in the gastrocnemius and superficial vastus lateralis (SVL) muscles under sedentary conditions. GLUT4 overexpression was not able to augment exercise-stimulated Rg or Kg. Whereas HK II overexpression had no effect on fasting glycemia (170 +/- 6 mg/dl) or sedentary Rg, it increased exercise-stimulated Rg by 82, 60, and 169% in soleus, gastrocnemius, and SVL muscles, respectively. Combined GLUT4 and HK II overexpression lowered fasting glycemia (106 +/- 6 mg/dl), increased nonesterified fatty acids, and increased sedentary Rg. Combined GLUT4 and HK II overexpression did not enhance exercise-stimulated Rg compared with HK II-overexpressing mice because of the reduced glucose concentration. GLUT4 combined with HK II overexpression resulted in a marked increase in exercise-stimulated Kg. In conclusion, control of MGU shifts from membrane transport at rest to phosphorylation during exercise. Glucose transport is not normally a significant barrier during exercise. However, when the phosphorylation barrier is lowered by HK II overexpression, glucose transport becomes a key site of control for regulating MGU during exercise.  相似文献   

13.
The insulin-regulated aminopeptidase (IRAP) is a zinc-dependent membrane aminopeptidase. It is the homologue of the human placental leucine aminopeptidase. In fat and muscle cells, IRAP colocalizes with the insulin-responsive glucose transporter GLUT4 in intracellular vesicles and redistributes to the cell surface in response to insulin, as GLUT4 does. To address the question of the physiological function of IRAP, we generated mice with a targeted disruption of the IRAP gene (IRAP-/-). Herein, we describe the characterization of these mice with regard to glucose homeostasis and regulation of GLUT4. Fed and fasted blood glucose and insulin levels in the IRAP-/- mice were normal. Whereas IRAP-/- mice responded to glucose administration like control mice, they exhibited an impaired response to insulin. Basal and insulin-stimulated glucose uptake in extensor digitorum longus muscle, and adipocytes isolated from IRAP-/- mice were decreased by 30-60% but were normal for soleus muscle from male IRAP-/- mice. Total GLUT4 levels were diminished by 40-85% in the IRAP-/- mice in the different muscles and in adipocytes. The relative distribution of GLUT4 in subcellular fractions of basal and insulin-stimulated IRAP-/- adipocytes was the same as in control cells. We conclude that IRAP-/- mice maintain normal glucose homeostasis despite decreased glucose uptake into muscle and fat cells. The absence of IRAP does not affect the subcellular distribution of GLUT4 in adipocytes. However, it leads to substantial decreases in GLUT4 expression.  相似文献   

14.
We investigated the impact of GLUT2 gene inactivation on the regulation of hepatic glucose metabolism during the fed to fast transition. In control and GLUT2-null mice, fasting was accompanied by a approximately 10-fold increase in plasma glucagon to insulin ratio, a similar activation of liver glycogen phosphorylase and inhibition of glycogen synthase and the same elevation in phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNAs. In GLUT2-null mice, mobilization of glycogen stores was, however, strongly impaired. This was correlated with glucose-6-phosphate (G6P) levels, which remained at the fed values, indicating an important allosteric stimulation of glycogen synthase by G6P. These G6P levels were also accompanied by a paradoxical elevation of the mRNAs for L-pyruvate kinase. Re-expression of GLUT2 in liver corrected the abnormal regulation of glycogen and L-pyruvate kinase gene expression. Interestingly, GLUT2-null livers were hyperplasic, as revealed by a 40% increase in liver mass and 30% increase in liver DNA content. Together, these data indicate that in the absence of GLUT2, the G6P levels cannot decrease during a fasting period. This may be due to neosynthesized glucose entering the cytosol, being unable to diffuse into the extracellular space, and being phosphorylated back to G6P. Because hepatic glucose production is nevertheless quantitatively normal, glucose produced in the endoplasmic reticulum may also be exported out of the cell through an alternative, membrane traffic-based pathway, as previously reported (Guillam, M.-T., Burcelin, R., and Thorens, B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12317-12321). Therefore, in fasting, GLUT2 is not required for quantitative normal glucose output but is necessary to equilibrate cytosolic glucose with the extracellular space. In the absence of this equilibration, the control of hepatic glucose metabolism by G6P is dominant over that by plasma hormone concentrations.  相似文献   

15.
To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4-deficient and wild-type mice were studied after a 3 h swim exercise. In wild-type mice, insulin and swimming each increased 2-deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2-deoxyglucose glucose uptake in muscle from GLUT4-null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4-null mice, with no effect noted in fasted GLUT4-null mice. This exercise-associated 2-deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4-null muscle was increased 1.6-fold over basal levels after electrical stimulation. Contraction-induced glucose transport activity was fourfold greater in wild-type vs. GLUT4-null muscle. Glycogen content in gastrocnemius muscle was similar between wild-type and GLUT4-null mice and was reduced approximately 50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild-type, with no change in GLUT4-null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4-null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise-induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild-type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4-null mice were totally restored after 24 h carbohydrate refeeding.-Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg-Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice.  相似文献   

16.
Cherng JY  Shih MF 《Life sciences》2006,78(11):1181-1186
Chlorella, a type of unicellular fresh water algae, has been a popular foodstuff in Japan and Taiwan. Studies have shown the hypoglycemic effects of Chlorella in alloxan-induced and Streptozocin (STZ)-induced diabetic animals. However, the mechanisms by which Chlorella treatment affects blood glucose homeostasis have not been studied. Diabetes in ICR mice was induced by injection of STZ. Lipogenesis in vivo was measured by incorporating 3H-H2O into lipids in brown and white adipose tissues. Glucose uptake in the liver and soleus muscles was measured by assaying 2-deoxy-D-[1,2-3H] glucose levels. The effects of Chlorella on serum non-esterified fatty acids (NEFA) were measured with commercial assay kits. Insulin-stimulated lipogenic rates in brown and white adipose tissues were unaffected by Chlorella. However, Chlorella increased 2-deoxyglucose uptake in the livers and soleus muscles in normal and STZ mice compared to that in their respective controls (p < 0.01). In addition, fasting NEFA levels were lower in Chlorella-treated STZ mice compared to H2O-treated STZ mice (p < 0.005). The current results suggest that the hypoglycemic effects of Chlorella are due to an enhancement of glucose uptake in the liver and in soleus muscles. The improved insulin sensitivity after Chlorella treatment could be also due to lower NEFA levels, since insulin sensitivity is usually blunted by elevated NEFA in diabetes.  相似文献   

17.
Calorie restriction (CR) (consuming ∼60% of ad libitum, AL, intake) improves whole body insulin sensitivity and enhances insulin-stimulated glucose uptake by isolated skeletal muscles. However, little is known about CR-effects on in vivo glucose uptake and insulin signaling in muscle. Accordingly, 9-month-old male AL and CR (initiated when 3-months-old) Fischer 344xBrown Norway rats were studied using a euglycemic-hyperinsulinemic clamp with plasma insulin elevated to a similar level (∼140 µU/ml) in each diet group. Glucose uptake (assessed by infusion of [14C]-2-deoxyglucose, 2-DG), phosphorylation of key insulin signaling proteins (insulin receptor, Akt and Akt substrate of 160kDa, AS160), abundance of GLUT4 and hexokinase proteins, and muscle fiber type composition (myosin heavy chain, MHC, isoform percentages) were determined in four predominantly fast-twitch (epitrochlearis, gastrocnemius, tibialis anterior, plantaris) and two predominantly slow-twitch (soleus, adductor longus) muscles. CR did not result in greater GLUT4 or hexokinase abundance in any of the muscles, and there were no significant diet-related effects on percentages of MHC isoforms. Glucose infusion was greater for CR versus AL rats (P<0.05) concomitant with significantly (P<0.05) elevated 2-DG uptake in 3 of the 4 fast-twitch muscles (epitrochlearis, gastrocnemius, tibialis anterior), without a significant diet-effect on 2-DG uptake by the plantaris or either slow-twitch muscle. Each of the muscles with a CR-related increase in 2-DG uptake was also characterized by significant (P<0.05) increases in phosphorylation of both Akt and AS160. Among the 3 muscles without a CR-related increase in glucose uptake, only the soleus had significant (P<0.05) CR-related increases in Akt and AS160 phosphorylation. The current data revealed that CR leads to greater whole body glucose disposal in part attributable to elevated in vivo insulin-stimulated glucose uptake by fast-twitch muscles. The results also demonstrated that CR does not uniformly enhance either insulin signaling or insulin-stimulated glucose uptake in all muscles in vivo.  相似文献   

18.
The hormone leptin plays a crucial role in maintenance of body weight and glucose homeostasis. This occurs through central and peripheral pathways, including regulation of insulin secretion by pancreatic beta cells. To study this further in mice, we disrupted the signaling domain of the leptin receptor gene in beta cells and hypothalamus. These mice develop obesity, fasting hyperinsulinemia, impaired glucose-stimulated insulin release, and glucose intolerance, similar to leptin receptor null mice. However, whereas complete loss of leptin function causes increased food intake, this tissue-specific attenuation of leptin signaling does not alter food intake or satiety responses to leptin. Moreover, unlike other obese models, these mice have reduced fasting blood glucose. These results indicate that leptin regulation of glucose homeostasis extends beyond insulin sensitivity to influence beta cell function, independent of pathways controlling food intake. These data suggest that defects in this adipoinsular axis could contribute to diabetes associated with obesity.  相似文献   

19.
This review focuses on the effects of varying levels of GLUT4, the insulin-sensitive glucose transporter, on insulin sensitivity and whole body glucose homeostasis. Three mouse models are discussed including MLC-GLUT4 mice which overexpress GLUT4 specifically in skeletal muscle, GLUT4 null mice which express no GLUT4, and the MLC-GLUT4 null mice which express GLUT4 only in skeletal muscle. Overexpressing GLUT4 specifically in the skeletal muscle results in increased insulin sensitivity in the MLC-GLUT4 mice. In contrast, the GLUT4 null mice exhibit insulin intolerance accompanied by abnormalities in glucose and lipid metabolism. Restoring GLUT4 expression in skeletal muscle in the MLC-GLUT4 null mice results in normal glucose metabolism but continued abnormal lipid metabolism. The results of experiments using these mouse models demonstrates that modifying the expression of GLUT4 profoundly affects whole body insulin action and consequently glucose and lipid metabolism.  相似文献   

20.
The action of insulin to recruit the intracellular GLUT4 glucose transporter to the plasma membrane of 3T3-L1 adipocytes is mimicked by endothelin 1, which signals through trimeric G(alpha)q or G(alpha)11 proteins. Here we report that murine G(alpha)11 is most abundant in fat and that expression of the constitutively active form of G(alpha)11 [G(alpha)11(Q209L)] in 3T3-L1 adipocytes causes recruitment of GLUT4 to the plasma membrane and stimulation of 2-deoxyglucose uptake. In contrast to the action of insulin on GLUT4, the effects of endothelin 1 and G(alpha)11 were not inhibited by the phosphatidylinositol 3-kinase inhibitor wortmannin at 100 nM. Signaling by insulin, endothelin 1, or G(alpha)11(Q209L) also mobilized cortical F-actin in cultured adipocytes. Importantly, GLUT4 translocation caused by all three agents was blocked upon disassembly of F-actin by latrunculin B, suggesting that the F-actin polymerization caused by these agents may be required for their effects on GLUT4. Remarkably, expression of a dominant inhibitory form of the actin-regulatory GTPase ARF6 [ARF6(T27N)] in cultured adipocytes selectively inhibited both F-actin formation and GLUT4 translocation in response to endothelin 1 but not insulin. These data indicate that ARF6 is a required downstream element in endothelin 1 signaling through G(alpha)11 to regulate cortical actin and GLUT4 translocation in cultured adipocytes, while insulin action involves different signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号