首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the pH dependence of the conformational stability of ribonucleases A and T1, urea and guanidine hydrochloride denaturation curves have been determined over the pH range 2-10. The maximum conformational stability of both proteins is about 9 kcal/mol and occurs near pH 4.5 for ribonuclease T1 and between pH 7 and 9 for ribonuclease A. The pH dependence suggests that electrostatic interactions among the charged groups make a relatively small contribution to the conformational stability of these proteins. The dependence of delta G on urea concentration increases from about 1200 cal mol-1 M-1 at high pH to about 2400 cal mol-1 M-1 at low pH for ribonuclease A. This suggests that the unfolded conformations of RNase A become more accessible to urea as the net charge on the molecule increases. For RNase T1, the dependence of delta G on urea concentration is minimal near pH 6 and increases at both higher and lower pH. An analysis of information of this type for several proteins in terms of a model developed by Tanford [Tanford, C. (1964) J. Am. Chem. Soc. 86, 2050-2059] suggests that the unfolded states of proteins in urea and GdnHCl solutions may differ significantly in the extent of their interaction with denaturants. Thus, the conformations assumed by unfolded proteins may depend to at least some extent on the amino acid sequence of the protein.  相似文献   

2.
Differential scanning calorimetry has been used to investigate the thermodynamics of denaturation of ribonuclease T1 as a function of pH over the pH range 2-10, and as a function of NaCl and MgCl2 concentration. At pH 7 in 30 mM PIPES buffer, the thermodynamic parameters are as follows: melting temperature, T1/2 = 48.9 +/- 0.1 degrees C; enthalpy change, delta H = 95.5 +/- 0.9 kcal mol-1; heat capacity change, delta Cp = 1.59 kcal mol-1 K-1; free energy change at 25 degrees C, delta G degrees (25 degrees C) = 5.6 kcal mol-1. Both T1/2 = 56.5 degrees C and delta H = 106.1 kcal mol-1 are maximal near pH 5. The conformational stability of ribonuclease T1 is increased by 3.0 kcal/mol in the presence of 0.6 M NaCl or 0.3 M MgCl2. This stabilization results mainly from the preferential binding of cations to the folded conformation of the protein. The estimates of the conformational stability of ribonuclease T1 from differential scanning calorimetry are shown to be in remarkably good agreement with estimates derived from an analysis of urea denaturation curves.  相似文献   

3.
Ribonuclease T1 has two disulfide bonds linking cysteine residues 2-10 and 6-103. We have prepared a derivative of ribonuclease T1 in which one disulfide bond is broken and the cysteine residues carboxymethylated, (2-10)-RCM-T1, and three derivatives in which both disulfides are broken and the cysteine residues reduced, R-T1, carboxamidomethylated, RCAM-T1, or carboxymethylated, RCM-T1. The RNA hydrolyzing activity of these proteins has been measured, and urea and thermal denaturation studies have been used to determine conformational stability. The activity, melting temperature, and conformational stability of the proteins are: ribonuclease T1 (100%, 59.3 degrees C, 10.2 kcal/mol), (2-10)-RCM-T1 (86%, 53.3 degrees C, 6.8 kcal/mol), R-T1 (53%, 27.2 degrees C, 3.0 kcal/mol), RCAM-T1 (43%, 21.2 degrees C, 1.5 kcal/mol), and RCM-T1 (35%, 16.6 degrees C, 0.9 kcal/mol). Thus, the conformational stability is decreased by 3.4 kcal/mol when one disulfide bond is broken and by 7.2-9.3 kcal/mol when both disulfide bonds are broken. It is quite remarkable that RNase T1 can fold and function with both disulfide bonds broken and the cysteine residues carboxymethylated. The large decrease in the stability is due mainly to an increase in the conformational entropy of the unfolded protein which results when the constraints of the disulfide bonds on the flexibility are removed. We propose a new equation for predicting the effect of a cross-link on the conformational entropy of a protein: delta Sconf = -2.1 - (3/2)R 1n n, where n is the number of residues between the side chains which are cross-linked. This equation gives much better agreement with experimental results than other forms of this equation which have been used previously.  相似文献   

4.
J Sancho  L Serrano  A R Fersht 《Biochemistry》1992,31(8):2253-2258
A single histidine residue has been placed at either the N-terminus or the C-terminus of each of the two alpha-helices of barnase. The pKa of that histidine residue in each of the four mutants has been determined by 1H NMR. The pKas of the two residues at the C-terminus are, on average, 0.5 unit higher, and those of the residues at the N-terminus are 0.8 unit lower, than the pKa of histidines in unfolded barnase at low ionic strength. The conformational stability of the mutant proteins at different values of pH has been measured by urea denaturation. C-Terminal histidine mutants are approximately 0.6 kcal mol-1 more stable when the introduced histidine is protonated, both at low and high ionic strength. N-Terminal mutants with a protonated histidine residue are approximately 1.1 kcal mol-1 less stable at low ionic strength and 0.5 kcal mol-1 less stable at high ionic strength (1 M NaCl). The low-field 1H NMR spectra of the mutant proteins at low pH suggest that the C-terminal histidines form hydrogen bonds with the protein while the N-terminal histidines do not form the same. The perturbations of pKa and stability result from a combination of different electrostatic environments and hydrogen-bonding patterns at either ends of helices. The value of 0.6 kcal mol-1 represents a lower limit to the favorable electrostatic interaction between the alpha-helix dipole and a protonated histidine residue at the C-terminal end of the helix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
F P Schwarz 《Biochemistry》1988,27(22):8429-8436
Differential scanning calorimetry (DSC) measurements were performed on the thermal denaturation of ribonuclease a and ribonuclease a complexed with an inhibitor, cytidine or uridine 3'-monophosphate, in sodium acetate buffered solutions. Thermal denaturation of the complex results in dissociation of the complex into denatured ribonuclease a and free inhibitor. Binding constants of the inhibitor to ribonuclease a were determined from the increase in the denaturation temperature of ribonuclease a in the complexed form and from the denaturation enthalpy of the complex. Binding enthalpies of the inhibitor to ribonuclease a were determined from the increase in the denaturation enthalpy of ribonuclease a complexed with the inhibitor. For the cytidine inhibitor in 0.2 M sodium acetate buffered solutions, the binding constants increase from 87 +/- 8 M-1 (pH 7.0) to 1410 +/- 54 M-1 (pH 5.0), while the binding enthalpies increase from 17 +/- 13 kJ mol-1 (pH 4.7) to 79 +/- 15 kJ mol-1 (pH 5.5). For the uridine inhibitor in 0.2 M sodium acetate buffered solutions, the binding constants increase from 104 +/- 1 M-1 (pH 7.0) to 402 +/- 7 M-1 (pH 5.5), while the binding enthalpies increase from 16 +/- 5 kJ mol-1 (pH 6.0) to 37 +/- 4 kJ mol-1 (pH 7.0). The binding constants and enthalpies of the cytidine inhibitor in 0.05 M sodium acetate buffered solutions increase respectively from 328 +/- 37 M-1 (pH 6.5) to 2200 +/- 364 M-1 (pH 5.5) and from 22 kJ mol-1 (pH 5.5) to 45 +/- 7 kJ mol-1 (pH 6.5). the denaturation transition cooperativities of the uncomplexed and complexed ribonuclease a were close to unity, indicating that the transition is two state with a stoichiometry of 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The compactness of ribonuclease A with intact disulfide bonds and reduced ribonuclease A was investigated by synchrotron small-angle X-ray scattering. The Rg values and the Kratky plots showed that non-reduced ribonuclease A maintain a compact shape with a Rg value of about 17.3 Å in 8 M urea. The reduced ribonuclease A is more expanded, its Rg value is about 20 Å in 50 mM Tris-HCl buffer at pH 8.1 containing 20 mM DTT. Further expansions of reduced ribonuclease A were observed in the presence of high concentrations of denaturants, indicating that reduced ribonuclease A is more expanded and is in neither a random coil [A. Noppert et al., FEBS Lett. 380 (1996) 179–182] nor a compact denatured state [T.R. Sosnick and J. Trewhella, Biochemistry 31 (1992) 8329–8335]. The four disulfide bonds keep ribonuclease A in a compact state in the presence of high concentrations of urea.  相似文献   

7.
The significant contribution of disulfide bonds to the conformational stability of proteins is generally considered to result from an entropic destabilization of the unfolded state causing a faster escape of the molecules to the native state. However, the introduction of extra disulfide bonds into proteins as a general approach to protein stabilization yields rather inconsistent results. By modeling studies, we selected positions to introduce additional disulfide bonds into ribonuclease A at regions that had proven to be crucial for the initiation of the folding or unfolding process, respectively. However, only two out of the six variants proved to be more stable than unmodified ribonuclease A. The comparison of the thermodynamic and kinetic data disclosed a more pronounced effect on the unfolding reaction for all variants regardless of the position of the extra disulfide bond. Native-state proteolysis indicated a perturbation of the native state of the destabilized variants that obviously counterbalances the stability gain by the extra disulfide bond.  相似文献   

8.
The conformational stability of RNase Rs was determined with chemical and thermal denaturants over the pH range of 1-10. Equilibrium unfolding with urea showed that values of D(1/2) (5.7 M) and DeltaG(H(2)O) (12.8 kcal/mol) were highest at pH 5.0, its pI and the maximum conformational stability of RNase Rs was observed near pH 5.0. Denaturation with guanidine hydrochloride (GdnHCl), at pH 5.0, gave similar values of DeltaG(H(2)O) although GdnHCl was 2-fold more potent denaturant with D(1/2) value of 3.1 M. The curves of fraction unfolded (f(U)) obtained with fluorescence and CD measurements overlapped at pH 5.0. Denaturation of RNase Rs with urea in the pH range studied was reversible but the enzyme denatured irreversibly >pH 11.0. Thermal denaturation of RNase Rs was reversible in the pH range of 2.0-3.0 and 6.0-9.0. Thermal denaturation in the pH range 4.0-5.5 resulted in aggregation and precipitation of the protein above 55 degrees C. The aggregate was amorphous or disordered precipitate as observed in TE micrographs. Blue shift in emission lambda(max) and enhancement of fluorescence intensity of ANS at 70 degrees C indicated the presence of solvent exposed hydrophobic surfaces as a result of heat treatment. Aggregation could be prevented partially with alpha-cyclodextrin (0.15 M) and completely with urea at concentrations >3 M. Aggregation was probably due to intermolecular hydrophobic interaction favored by minimum charge-charge repulsion at the pI of the enzyme. Both urea and temperature-induced denaturation studies showed that RNase Rs unfolds through a two-state F right arrow over left arrow U mechanism. The pH dependence of stability described by DeltaG(H(2)O) (urea) and DeltaG (25 degrees C) suggested that electrostatic interactions among the charged groups make a significant contribution to the conformational stability of RNase Rs. Since RNase Rs is a disulfide-containing protein, the major element for structural stability are the covalent disulfide bonds.  相似文献   

9.
Apamin is an 18-residue bee venom peptide with the sequence CNCKAPETALCARRCQQH-amide and contains 2 disulfide bonds connecting C-1 to C-11 and C-3 to C-15. In the folding of reduced, unfolded apamin to native apamin with two disulfide bonds, the one-disulfide folding intermediate states are not populated to significant levels. To study the properties of the one-disulfide intermediates, we have synthesized two peptide models to mimic the one-disulfide intermediates, Apa-1 and Apa-2, in which two cysteines in the sequence have been replaced by alanines. These peptides can form only one of the native disulfide bonds, C-1 to C-11 in the case of Apa-1 and C-3 to C-15 in the case of Apa-2. The stabilities of these disulfide bonds have been measured as a function of pH, concentration of urea, and temperature, in order to understand which contributions stabilize the disulfide-bonded structures. Using oxidized and reduced glutathione, the equilibrium constants for forming the disulfide bonds at 25 degrees C and pH 7.0 are 0.018 M for Apa-1 and 0.033 M for Apa-2 and show little dependence on pH or temperature. Both disulfide bonds are destabilized slightly (by approximately a factor of 2) between 0 and 8 M urea. Circular dichroism spectra indicate that although both Apa-1 and Apa-2 exhibit some structure, Apa-2 exhibits more than Apa-1. The results suggest that in the folding of apamin, the one-disulfide intermediate containing the C-3 to C-15 disulfide bond, as in Apa-2, is favored slightly. Secondary structure provides modest stabilization to this intermediate.  相似文献   

10.
For 30 years, the prevailing view has been that the hydrophobic effect contributes considerably more than hydrogen bonding to the conformational stability of globular proteins. The results and reasoning presented here suggest that hydrogen bonding and the hydrophobic effect make comparable contributions to the conformational stability of ribonuclease T1 (RNase T1). When RNase T1 folds, 86 intramolecular hydrogen bonds with an average length of 2.95 A are formed. Twelve mutants of RNase T1 [Tyr----Phe (5), Ser----Ala (3), and Asn----Ala (4)] have been prepared that remove 17 of the hydrogen bonds with an average length of 2.93 A. On the basis of urea and thermal unfolding studies of these mutants, the average decrease in conformational stability due to hydrogen bonding is 1.3 kcal/mol per hydrogen bond. This estimate is in good agreement with results from several related systems. Thus, we estimate that hydrogen bonding contributes about 110 kcal/mol to the conformational stability of RNase T1 and that this is comparable to the contribution of the hydrophobic effect. Accepting the idea that intramolecular hydrogen bonds contribute 1.3 +/- 0.6 kcal/mol to the stability of systems in an aqueous environment makes it easier to understand the stability of the "molten globule" states of proteins, and the alpha-helical conformations of small peptides.  相似文献   

11.
The conformational stability of the Schizolobium parahyba chymotrypsin inhibitor (SPCI) was investigated based on conformational changes and inhibitory activity in the presence of chaotropic and stabilizing agents. At 90°C, the half-lifetime of SPCI was 154 min, while in the presence of 1 M KCl and 20% PEG 20,000, it was drastically reduced to 6 and 3 min, respectively. In contrast, at 90°C, the SPCI structure remained unaltered with the addition of 1 mM DTT and 56% glycerol. The reduction of the two disulfide bonds caused conformational changes in the SPCI without altering the inhibitory activity, suggesting that disulfide bonds are irrelevant to the maintenance of SPCI conformation. Unfolded structures were formed in the presence of 6 M GdnHCl, while in the presence of 8 M urea, destabilization was due to peptide bond rupture. These results suggest that the thermal inactivation of SPCI involves conformational changes and that hydrophobic and electrostatic interactions play a significant role, while the disulfide bonds are of secondary importance in maintaining the high thermal stability of SPCI.  相似文献   

12.
Conformational stability and mechanism of folding of ribonuclease T1   总被引:5,自引:0,他引:5  
Urea and thermal unfolding curves for ribonuclease T1 (RNase T1) were determined by measuring several different physical properties. In all cases, steep, single-step unfolding curves were observed. When these results were analyzed by assuming a two-state folding mechanism, the plots of fraction unfolded protein versus denaturant were coincident. The dependence of the free energy of unfolding, delta G (in kcal/mol), on urea concentration is given by delta G = 5.6 - 1.21 (urea). The parameters characterizing the thermodynamics of unfolding are: midpoint of the thermal unfolding curve, Tm = 48.1 degrees C, enthalpy change at Tm, delta Hm = 97 kcal/mol, and heat capacity change, delta Cp = 1650 cal/mol deg. A single kinetic phase was observed for both the folding and unfolding of RNase T1 in the transition and post-transition regions. However, two slow kinetic phases were observed during folding in the pre-transition region. These two slow phases account for about 90% of the observed amplitude, indicating that a faster kinetic phase is also present. The slow phases probably result from cis-trans isomerization at the 2 proline residues that have a cis configuration in folded RNase T1. These results suggest that RNase T1 folds by a highly cooperative mechanism with no structural intermediates once the proline residues have assumed their correct isomeric configuration. At 25 degrees C, the folded conformation is more stable than the unfolded conformations by 5.6 kcal/mol at pH 7 and by 8.9 kcal/mol at pH 5, which is the pH of maximum stability. At pH 7, the thermodynamic data indicate that the maximum conformational stability of 8.3 kcal/mol will occur at -6 degrees C.  相似文献   

13.
The ionizable groups in proteins with the lowest pKs are the carboxyl groups of aspartic acid side-chains. One of the lowest, pK=0.6, is observed for Asp76 in ribonuclease T1. This low pK appeared to result from hydrogen bonds to a water molecule and to the side-chains of Asn9, Tyr11, and Thr91. The results here confirm this by showing that the pK of Asp76 increases to 1.7 in N9A, to 4.0 in Y11F, to 4.2 in T91V, to 4.4 in N9A+Y11F, to 4.9 in N9A+T91V, to 5.9 in Y11F+T91V, and to 6.4 in the triple mutant: N9A+Y11F+T91V. In ribonuclease Sa, the lowest pK=2.4 for Asp33. This pK increases to 3.9 in T56A, which removes the hydrogen bond to Asp33, and to 4.4 in T56V, which removes the hydrogen bond and replaces the -OH group with a -CH(3) group. It is clear that hydrogen bonds are able to markedly lower the pK values of carboxyl groups in proteins. These same hydrogen bonds make large contributions to the conformational stability of the proteins. At pH 7, the stability of D76A ribonuclease T1 is 3.8 kcal mol(-1) less than wild-type, and the stability of D33A ribonuclease Sa is 4.1 kcal mol(-1) less than wild-type. There is a good correlation between the changes in the pK values and the changes in stability. The results suggest that the pK values for these buried carboxyl groups would be greater than 8 in the absence of hydrogen bonds, and that the hydrogen bonds and other interactions of the carboxyl groups contribute over 8 kcal mol(-1) to the stability.  相似文献   

14.
A Giletto  C N Pace 《Biochemistry》1999,38(40):13379-13384
The side-chain carboxyl of Asp 76 in ribonuclease T1 (RNase T1) is buried, charged, non-ion-paired, and forms three good intramolecular hydrogen bonds (2.63, 2.69, and 2.89 A) and a 2.66 A hydrogen bond to a buried, conserved water molecule. When Asp 76 was replaced by Asn, Ser, and Ala, the conformational stability of the protein decreased by 3.1, 3.2, and 3.7 kcal/mol, respectively. The stability was measured as a function of pH for wild-type RNase T1 and the D76N mutant and showed that the pH dependence below pH 3 was almost entirely due to Asp 76. The pK of Asp 76 is 0.5 in the native state and 3.7 in the denatured state. Thus, the hydrogen bonding of the carboxyl group of Asp 76 contributes more than half of the net stability of RNase T1 at pH 7. In addition, the charged carboxyl of Asp 76 stabilizes structure in the denatured states of RNase T1 that is not present in D76N, D76S, and D76A.  相似文献   

15.
Barnase, the ribonuclease from Bacillus amyloliquefaciens, has been cloned and expressed in Escherichia coli [Hartley, R. W. (1988) J. Mol. Biol. 202, 913-915], thus enabling the overproduction and site-directed mutagenesis of one of the smallest enzymes (Mr equals 12,382). As barnase is also composed of just a single polypeptide chain with no disulfide bridges and has a reversible folding transition, it affords a fine system for studying protein folding and design. We show here that the recombinant enzyme has properties identical with those of the authentic enzyme, characterize the basic kinetics and specificity of the enzyme, and, using site-directed mutagenesis, identify key residues involved in catalysis to provide evidence that supports the classic ribonuclease mechanism. The wild-type enzyme catalyzes the hydrolysis of dinucleotides of structure GpN. There is a prime requirement for G and a preference for A greater than G greater than C greater than U for N. The pH-activity curve for the transesterification step of dinucleotides is bell shaped with an optimum for kcat/KM and kcat at about pH 5. The enzyme is far more active toward long RNA molecules, and the pH optimum for kcat is at 8.5. The activity of barnase toward dinucleotide substrates is about 0.5% of that of the highly homologous T1 nuclease at pH 5.9, but barnase is twice as active as T1 toward RNA at pH 8.5. There must be important subsite interactions that contribute to catalysis in barnase in addition to those immediately on either side of the scissile bond.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The irreversible unfolding of covalently inhibited swine pepsin by urea was studied by spectrophotometric and viscosity measurements. At pH 4.5 and 25 degrees C in 8 M urea, a stable intermediate form of the protein was detected. It differed from the native protein by a slight loss of secondary structure and an increased intrinsic viscosity ([pi] = 7.5 mL g-1), indicating the intermediate to have an increased molecular volume or to be more asymmetric in shape. The protein was transformed into a random coil form by increases of temperature and pH. Comparison with other results suggested that at pH 6 pepsin is less stable than its inactive precursor, pepsinogen, by about 3 Kcal mol-1 (1 cal = 4.187 J).  相似文献   

17.
Human alpha-thrombin is a very important plasma serine protease, which is involved in physiologically vital processes like hemostasis, thrombosis, and activation of platelets. Knowledge regarding the structural stability of alpha-thrombin is essential for understanding its biological regulation. Here, we investigated the structural and conformational stability of alpha-thrombin using the techniques of disulfide reduction and disulfide scrambling. alpha-Thrombin is composed of a light A-chain (36 residues) and a heavy B-chain (259 residues) linked covalently by an inter-chain disulfide bond (Cys(1)-Cys(122)). The B-chain is stabilized by three intra-chain disulfide bonds (Cys(42)-Cys(58), Cys(168)-Cys(182), and Cys(191)-Cys(220)) (Chymotrypsinogen nomenclature). Upon reduction with dithiothreitol (DTT), alpha-thrombin unfolded in a 'sequential' manner with sequential reduction of Cys(168)-Cys(182) within the B-chain followed by the inter-chain disulfide, generating two distinct partially reduced intermediates, I-1 and I-2, respectively. Conformational stability of alpha-thrombin was investigated by the technique of disulfide scrambling. alpha-Thrombin denatures by scrambling its native disulfide bonds in the presence of denaturant [urea, guanidine hydrochloride (GdmCl) or guanidine thiocyanate (GdmSCN)] and a thiol initiator. During the process, cleavage of the inter-chain disulfide bond and release of the A-chain from B-chain was the foremost event. The three disulfides in the B-chain subsequently scrambled to form three major isomers (designated as X-Ba, X-Bb, and X-Bc). Complete denaturation of alpha-thrombin was observed at low concentrations of denaturants (0.5 M GdmSCN, 1.5 M GdmCl, or 3 M urea) indicating low conformational stability of the protease.  相似文献   

18.
Disulfide bonds between the side chains of cysteine residues are the only common crosslinks in proteins. Bovine pancreatic ribonuclease A (RNase A) is a 124-residue enzyme that contains four interweaving disulfide bonds (Cys26-Cys84, Cys40-Cys95, Cys58-Cys110, and Cys65-Cys72) and catalyzes the cleavage of RNA. The contribution of each disulfide bond to the conformational stability and catalytic activity of RNase A has been determined by using variants in which each cystine is replaced independently with a pair of alanine residues. Thermal unfolding experiments monitored by ultraviolet spectroscopy and differential scanning calorimetry reveal that wild-type RNase A and each disulfide variant unfold in a two-state process and that each disulfide bond contributes substantially to conformational stability. The two terminal disulfide bonds in the amino-acid sequence (Cys26-Cys84 and Cys58-Cys110) enhance stability more than do the two embedded ones (Cys40-Cys95 and Cys65-Cys72). Removing either one of the terminal disulfide bonds liberates a similar number of residues and has a similar effect on conformational stability, decreasing the midpoint of the thermal transition by almost 40 degrees C. The disulfide variants catalyze the cleavage of poly(cytidylic acid) with values of kcat/Km that are 2- to 40-fold less than that of wild-type RNase A. The two embedded disulfide bonds, which are least important to conformational stability, are most important to catalytic activity. These embedded disulfide bonds likely contribute to the proper alignment of residues (such as Lys41 and Lys66) that are necessary for efficient catalysis of RNA cleavage.  相似文献   

19.
Gekko K  Kimoto A  Kamiyama T 《Biochemistry》2003,42(46):13746-13753
To elucidate the effects of disulfide bonds on the compactness of protein molecules, the partial specific volume (v(o)) and coefficients of adiabatic compressibility (beta(s)(o)) and thermal expansibility (alpha) of five globular proteins (ovalbumin, beta-lactoglobulin, lysozyme, ribonuclease A, and bovine serum albumin) were measured in aqueous solutions with pH values of 7 and 2 at 25 degrees C when their disulfide bonds were totally reduced by carboxamidomethylation. Circular dichroism and fluorescence spectra show that the secondary and tertiary structures are partly disrupted by reduction, depending on the number of disulfide bonds in the proteins and the pH of the medium. The conformational changes are accompanied by decreases in v(o) and beta(s)(o) and by an increase in alpha, indicating that reduction decreases the internal cavity and increases surface hydration. The beta(s)(o) values of native or oxidized proteins decrease, and the effects of reduction on the volumetric parameters become more significant as the number of disulfide bonds increases and as they are formed over a larger distance in the primary structure. These results demonstrate that disulfide bonds play an important role, mainly via entropic forces, in the three-dimensional structure and compactness of protein molecules.  相似文献   

20.
The reduction of methemoglobin by cobaltocytochrome c (Cocyt c) has been measured using nine mediators of different half-reduction potentials, Em, 7. The rate increases with the increase of Em, 7 for the mediator but dropped precipitously when it becomes more positive than the Em, 7 for the methemoglobin/hemoglobin couple. The reaction is most efficient with phenzaine methosulfate, therefore it was studied in detail. The reaction is first order in the concentrations of Cocyt c and phenazine methosulfate. The average second-order rate constant for Cocyt c + phenazine methosulfate (M) k1 leads to Cocyt c+ M-. is 2.9 x 10(4) M-1 s-1 at 25 degrees C, 0.1 M phosphate pH 7.0. There is a slight negative temperature dependence of k1 at low temperature; at higher temperatures the process has deltaH not equal to approximately 27 kJ mol-1 and deltaS not equal to approxmately - 75 J mol-1 K-1. The effect of anions reflects the dependence of Em, 7 for the methemoglobin/hemoglobin couple with various anions. There is no significant effect on k1 by the addition of inositol hexakisphosphate. The variation of k1 with pH is complicated. The experimental rate constants are compared with values calculated with the theory of nonadiabatic multiphonon process of electron tunneling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号