首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activity of protein kinase C (PKC), and in particular the PKCγ‐isoform, has been shown to strongly affect and regulate Purkinje cell dendritic development, suggesting an important role for PKC in activity‐dependent Purkinje cell maturation. In this study we have analyzed the role of two additional Ca2+‐dependent PKC isoforms, PKCα and ‐β, in Purkinje cell survival and dendritic morphology in slice cultures using mice deficient in the respective enzymes. Pharmacological PKC activation strongly reduced basal Purkinje cell dendritic growth in wild‐type mice whereas PKC inhibition promoted branching. Purkinje cells from mice deficient in PKCβ, which is expressed in two splice forms by granule but not Purkinje cells, did not yield measurable morphological differences compared to respective wild‐type cells under either experimental condition. In contrast, Purkinje cell dendrites in cultures from PKCα‐deficient mice were clearly protected from the negative effects on dendritic growth of pharmacological PKC activation and showed an increased branching response to PKC inhibition as compared to wild‐type cells. Together with our previous work on the role of PKCγ, these data support a model predicting that normal Purkinje cell dendritic growth is mainly regulated by the PKCγ‐isoform, which is highly activated by developmental processes. The PKCα isoform in this model forms a reserve pool, which only becomes activated upon strong stimulation and then contributes to the limitation of dendritic growth. The PKCβ isoform appears to not be involved in the signaling cascades regulating Purkinje cell dendritic maturation in cerebellar slice cultures. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 95–109, 2003  相似文献   

2.
Ji-Sook Lee  Eun Ju Yang  In Sik Kim   《Cytokine》2009,48(3):186-195
Idiopathic hypereosinophilc syndrome is a disorder associated with clonally eosinophilic proliferation. The importance of FIP1-like-1-platelet-derived growth factor receptor-α (FIP1L1-PDGFRA) in the pathogenesis and classification of HES has been recently reported. In this study, we investigated the contribution of monocyte chemoattractant protein-1 (MCP-1)/CCL2 to chemotactic activity and protein kinase C delta (PKCδ in the human eosinophilic leukemia cell line EoL-1. These cells express CCR2 protein among the CC chemokine receptors (CCR1-5). MCP-1 induces strong migration of EoL-1 cells and the chemotaxis signal in response to MCP-1 involves a Gi/Go protein, phospholipase C (PLC), PKCδ, p38 MAPK and NF-κB. MCP-1 activates p38 MAPK via Gi/Go protein, PLC and PKCδ cascade. MCP-1 also induces NF-κB translocation and the activation is inhibited by PKCδ activation. The increase in the basal expression and activity of PKCδ in EoL-1 cells, compared to normal eosinophils, inhibits apoptosis in EoL-1 cells. Anti-apoptotic mechanism of PKCδ is related to inhibition of caspase 3 and caspase 9, but not to FIP1L1-PDGFRA. PKCδ functions as an anti-apoptotic molecule, and is involved in EoL-1 cell movement stimulated by MCP-1. This study contributes to an understanding of MCP-1 in eosinophil biology and pathogenic mechanism of eosinophilic disorders.  相似文献   

3.
Xin Li  Tianyan Gao 《EMBO reports》2014,15(2):191-198
Protein kinase Cζ (PKCζ) is phosphorylated at the activation loop and the turn motif (TM). However, the TM kinase and functional relevance of TM phosphorylation remain largely unknown. We demonstrate that PKCζ TM is phosphorylated directly by the mTORC2 complex, and this phosphorylation is required for maintaining PKCζ kinase activity and stability. Functionally, mTORC2 regulates the activity of Rho family of GTPases, and therefore the organization of the actin cytoskeleton, through the control of PKCζ activity. Taken together, our findings identify PKCζ as a novel substrate and downstream effector of mTORC2 signaling.  相似文献   

4.
We earlier reported that 3-pyridinecarbonitriiles with a 4-methylindolyl-5-amino group at C-4 and a phenyl group at C-5 were inhibitors of PKCθ. Keeping the group at C-4 of the pyridine core constant, we varied the water solubilizing group on the phenyl ring at C-5 and then replaced the C-5 phenyl ring with several monocyclic heteroaryl rings, including furan, thiophene and pyridine. Analog 6e with a 4-methylindol-5-ylamino group at C-4 and a 5-[(4-methylpiperazin-1-yl)methyl]-2-furyl group C-5 had an IC50 value of 4.5 nM for the inhibition of PKCθ.  相似文献   

5.
6.
The phosphoserine/threonine binding protein 14‐3‐3 stimulates the catalytic activity of protein kinase C‐ε (PKCε) by engaging two tandem phosphoserine‐containing motifs located between the PKCε regulatory and catalytic domains (V3 region). Interaction between 14‐3‐3 and this region of PKCε is essential for the completion of cytokinesis. Here, we report the crystal structure of 14‐3‐3ζ bound to a synthetic diphosphorylated PKCε V3 region revealing how a consensus 14‐3‐3 site and a divergent 14‐3‐3 site cooperate to bind to 14‐3‐3 and so activate PKCε. Thermodynamic data show a markedly enhanced binding affinity for two‐site phosphopeptides over single‐site 14‐3‐3 binding motifs and identifies Ser 368 as a gatekeeper phosphorylation site in this physiologically relevant 14‐3‐3 ligand. This dual‐site intra‐chain recognition has implications for other 14‐3‐3 targets, which seem to have only a single 14‐3‐3 motif, as other lower affinity and cryptic 14‐3‐3 gatekeeper sites might exist.  相似文献   

7.
This report describes that protein kinase C delta (PKCδ) overexpression prevents TRAIL‐induced apoptosis in breast tumor cells; however, the regulatory mechanism(s) involved in this phenomenon is(are) incompletely understood. In this study, we have shown that TRAIL‐induced apoptosis was significantly inhibited in PKCδ overexpressing MCF‐7 (MCF7/PKCδ) cells. Our data reveal that PKCδ inhibits caspase‐8 activation, a first step in TRAIL‐induced apoptosis, thus preventing TRAIL‐induced apoptosis. Inhibition of PKCδ using rottlerin or PKCδ siRNA reverses the inhibitory effect of PKCδ on caspase‐8 activation leading to TRAIL‐induced apoptosis. To determine if caspase‐3‐induced PKCδ cleavage reverses its inhibition on caspase‐8, we developed stable cell lines that either expresses wild‐type PKCδ (MCF‐7/cas‐3/PKCδ) or caspase‐3 cleavage‐resistant PKCδ mutant (MCF‐7/cas‐3/PKCδ mut) utilizing MCF‐7 cells expressing caspase‐3. Cells that overexpress caspase‐3 cleavage‐resistant PKCδ mutant (MCF‐7/cas‐3/PKCδmut) significantly inhibited TRAIL‐induced apoptosis when compared to wild‐type PKCδ (MCF‐7/cas‐3/PKCδ) expressing cells. In MCF‐7/cas‐3/PKCδmut cells, TRAIL‐induced caspase‐8 activation was blocked leading to inhibition of apoptosis when compared to wild‐type PKCδ (MCF‐7/cas‐3/PKCδ) expressing cells. Together, these results strongly suggest that overexpression of PKCδ inhibits caspase‐8 activation leading to inhibition of TRAIL‐induced apoptosis and its inhibition by rottlerin, siRNA, or cleavage by caspase‐3 sensitizes cells to TRAIL‐induced apoptosis. Clinically, PKCδ overexpressing tumors can be treated with a combination of PKCδ inhibitor(s) and TRAIL as a new treatment strategy. J. Cell. Biochem. 111: 979–987, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
9.
10.
Exposure of the two related human leukemic cell lines U937 and TUR to chemotherapeutic compounds resulted in opposite effects on induction and resistance to apoptosis. Incubation of U937 cells with 1-β- -arabinofuranosylcytosine or the etoposide VP-16 was accompanied by growth arrest in G0/G1of the cell cycle and an accumulation of a population in the sub-G1phase which exhibited characteristics typical for the apoptotic pathway. In contrast, human TUR leukemia cells demonstrated no significant effects after a similar treatment with Ara-C and VP-16. Thus, TUR cells continued to proliferate in the presence of these anti-cancer drugs and the number of apoptotic cells as evaluated by propidium iodide staining and the detection of internucleosomal DNA fragmentation was significantly reduced when compared to the parental U937 cells. Similar effects were observed upon serum-starvation demonstrating resistance to apoptosis in TUR cells. Whereas induction of apoptosis is regulated by a network of distinct factors including the activation of proteolytically active caspases, we investigated these pathways in both cell lines. U937 cells demonstrated activation of the 32-kDa caspase-3 upon drug treatment by cleavage into the 20-kDa activated form. However, there was no 20-kDa caspase-3 fragment detectable in TUR cells. Simultaneously, the enzymatic activity of caspase-3 was significantly increased in drug-treated U937 cells as measuredin vitroby enhanced metabolization of a fluorescence substrate andin vivoby cleavage of an appropriate substrate for caspase-3, namely, protein kinase Cδ. In contrast, there was little if any caspase-3 activation detectable in drug-treated TUR cells. Taken together, these data suggest a signaling defect in the activation of the caspase-3 proteolytic system in TUR cells upon treatment with chemotherapeutic compounds which is associated with resistance to apoptosis in these human leukemia cells.  相似文献   

11.
The 90‐kDa heat shock protein (Hsp90α) has been identified on the surface of cancer cells, and is implicated in tumor invasion and metastasis, suggesting that it is a potentially important target for tumor therapy. However, the regulatory mechanism of Hsp90α plasma membrane translocation during tumor invasion remains poorly understood. Here, we show that Hsp90α plasma membrane expression is selectively upregulated upon epidermal growth factor (EGF) stimulation, which is a process independent of the extracellular matrix. Abrogation of EGF‐mediated activation of phospholipase (PLCγ1) by its siRNA or inhibitor prevents the accumulation of Hsp90α at cell protrusions. Inhibition of the downstream effectors of PLCγ1, including Ca2+ and protein kinase C (PKCγ), also blocks the membrane translocation of Hsp90α, while activation of PKCγ leads to increased levels of cell‐surface Hsp90α. Moreover, overexpression of PKCγ increases extracellular vesicle release, on which Hsp90α is present. Furthermore, activation or overexpression of PKCγ promotes tumor cell motility in vitro and tumor metastasis in vivo, whereas a specific neutralizing monoclonal antibody against Hsp90α inhibits such effects, demonstrating that PKCγ‐induced Hsp90α translocation is required for tumor metastasis. Taken together, our study provides a mechanistic basis for the role for the PLCγ1–PKCγ pathway in regulating Hsp90α plasma membrane translocation, which facilitates tumor cell motility and promotes tumor metastasis.  相似文献   

12.
13.
The target of rapamycin (TOR), as part of the rapamycin-sensitive TOR complex 1 (TORC1), regulates various aspects of protein synthesis. Whether TOR functions in this process as part of TORC2 remains to be elucidated. Here, we demonstrate that mTOR, SIN1 and rictor, components of mammalian (m)TORC2, are required for phosphorylation of Akt and conventional protein kinase C (PKC) at the turn motif (TM) site. This TORC2 function is growth factor independent and conserved from yeast to mammals. TM site phosphorylation facilitates carboxyl-terminal folding and stabilizes newly synthesized Akt and PKC by interacting with conserved basic residues in the kinase domain. Without TM site phosphorylation, Akt becomes protected by the molecular chaperone Hsp90 from ubiquitination-mediated proteasome degradation. Finally, we demonstrate that mTORC2 independently controls the Akt TM and HM sites in vivo and can directly phosphorylate both sites in vitro. Our studies uncover a novel function of the TOR pathway in regulating protein folding and stability, processes that are most likely linked to the functions of TOR in protein synthesis.  相似文献   

14.
Hippocampus dentate gyrus (DG) is characterized by neuronal plasticity processes in adulthood, and polysialylation of NCAM promotes neuronal plasticity. In previous investigations we found that α‐tocopherol increased the PSA‐NCAM‐positive granule cell number in adult rat DG, suggesting that α‐tocopherol may enhance neuronal plasticity. To verify this hypothesis, in the present study, structural remodeling in adult rat DG was investigated under α‐tocopherol supplementation conditions. PSA‐NCAM expression was evaluated by Western blotting, evaluation of PSA‐NCAM‐positive granule cell density, and morphometric analysis of PSA‐NCAM‐positive processes. In addition, the optical density of synaptophysin immunoreactivity and the synaptic profile density, examined by electron microscopy, were evaluated. Moreover, considering that PSA‐NCAM expression has been found to be related to PKCδ activity and α‐tocopherol has been shown to inhibit PKC activity in vitro, Western blotting and immunohistochemistry followed by densitometry were used to analyze PKC. Our results demonstrated that an increase in PSA‐NCAM expression and optical density of DG molecular layer synaptophysin immunoreactivity occurred in α‐tocopherol‐treated rats. Electron microscopy analysis showed that the increase in synaptophysin expression was related to an increase in synaptic profile density. In addition, Western blotting revealed a decrease in phospho‐PKC Pan and phospho‐PKCδ, demonstrating that α‐tocopherol is also able to inhibit PKC activity in vivo. Likewise, immunoreactivity for the active form of PKCδ was lower in α‐tocopherol‐treated rats than in controls, while no changes were found in PKCδ expression. These results demonstrate that α‐tocopherol is an exogenous factor affecting neuronal plasticity in adult rat DG, possibly through PKCδ inhibition. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

15.
In anterior pituitaries from male rats, it appeared that 5α-androstane-3β, 17β-diol was quickly metabolized into 5α-androstane-3β,6α-17β-triol and 5α-androstane-3β,7α, 17β-triol by action of 6α- and 7α-hydroxylases. Hydroxysteroid hydroxylases were located in endoplasmic reticulum and were dependent on NADPH+. Their optimum pH was 8.0, optima temperature, 37°C, and their apparent Km was 2.7 μM. Hydroxylative reactions were not reversible and not modified by gonadectomy. Hydroxylation seemed an efficient control of the pituitary level of 5α-andros-tane-3β, 17β-diol.  相似文献   

16.
G protein‐coupled receptors (GPCRs) have been found to trigger G protein‐independent signalling. However, the regulation of G protein‐independent pathways, especially their desensitization, is poorly characterized. Here, we show that the G protein‐independent 5‐HT4 receptor (5‐HT4R)‐operated Src/ERK (extracellular signal‐regulated kinase) pathway, but not the Gs pathway, is inhibited by GPCR kinase 5 (GRK5), physically associated with the proximal region of receptor’ C‐terminus in both human embryonic kidney (HEK)‐293 cells and colliculi neurons. This inhibition required two sequences of events: the association of β–arrestin1 to a phosphorylated serine/threonine cluster located within the receptor C‐t domain and the phosphorylation, by GRK5, of β–arrestin1 (at Ser412) bound to the receptor. Phosphorylated β‐arrestin1 in turn prevented activation of Src constitutively bound to 5‐HT4Rs, a necessary step in receptor‐stimulated ERK signalling. This is the first demonstration that β‐arrestin1 phosphorylation by GRK5 regulates G protein‐independent signalling.  相似文献   

17.
Deregulated expression or activity of kinases can lead to melanomas, but often the particular kinase isoform causing the effect is not well established, making identification and validation of different isoforms regulating disease development especially important. To accomplish this objective, an siRNA screen was undertaken that which identified glycogen synthase kinase 3α (GSK3α) as an important melanoma growth regulator. Melanocytes and melanoma cell lines representing various stages of melanoma tumor progression expressed both GSK3α and GSK3β, but analysis of tumors in patients with melanoma showed elevated expression of GSK3α in 72% of samples, which was not observed for GSK3β. Furthermore, 80% of tumors in patients with melanoma expressed elevated levels of catalytically active phosphorylated GSK3α (pGSK3αY279), but not phosphorylated GSK3β (pGSK3βY216). siRNA‐mediated reduction in GSK3α protein levels reduced melanoma cell survival and proliferation, sensitized cells to apoptosis‐inducing agents and decreased xenografted tumor development by up to 56%. Mechanistically, inhibiting GSK3α expression using siRNA or the pharmacological agent AR‐A014418 arrested melanoma cells in the G0/G1 phase of the cell cycle and induced apoptotic death to retard tumorigenesis. Therefore, GSK3α is a key therapeutic target in melanoma.  相似文献   

18.
19.
PKC, Ras, and ERK1/2 signaling is pivotal to differentiation along the neuronal cell lineage. One crucial protein that may play a central role in this signaling pathway is the Ras GTPase‐activating protein, neurofibromin, a PKC substrate that may exert a positive role in neuronal differentiation. In this report, we studied the dynamics of PKC/Ras/ERK pathway signaling, during differentiation of SH‐SY5Y neuroblastoma cells upon treatment with the PKC agonist, phorbol ester 12‐O‐tetradecanoyl‐phorbol‐13‐acetate (TPA). Surprisingly, we observed that, among other PKC‐dependent signaling events, TPA induced a rapid and sustained decrease of neurofibromin immunoreactivity which was not due to proteolysis. Instead, we identified a specific phosphorylation event at the C‐tail of neurofibromin. This phosphorylation was acute and correlated perfectly with the signaling dynamics of the Ras/ERK pathway. Moreover, it persisted throughout prolonged treatment and TPA‐induced differentiation of SH‐SY5Y cells, concurrently with sustained activation of ERK1/2. Most importantly, C‐tail phosphorylation of neurofibromin correlated with a shift of neurofibromin localization from the nucleus to the cytosol. We propose that PKC‐dependent, sustained C‐tail phosphorylation is a requirement for prolonged recruitment of neurofibromin from the nucleus to the cytosol in order for a fine regulation of Ras/ERK pathway activity to be achieved during differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号