首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Scope and Background  This paper presents the preliminary results from an ongoing feasibility study, investigating potential application of elements from the life cycle assessment (LCA) framework in European chemicals’ policy. Many policy areas affect manufacturing, marketing and use of chemicals. This article focuses on the general chemical legislation, especially issues related to regulatory risk assessment and subsequent decisions on risk reduction measures. Method  Current and upcoming chemical regulation has been reviewed and empirical knowledge has been gained from an ongoing case study and from dialogues with various stakeholders. Results and Discussion  LCAs are comparative and more holistic in view as compared to chemical risk assessments for regulatory purposes1. LCAs may therefore potentially improve the basis for decisions between alternatives in cases where a risk assessment calls for risk reduction. In this process, LCA results might feed into a socio-economic analysis having similar objectives, but some methodological aspects related to system boundaries need to be sorted out. Life cycle impact assessment (LCIA) of toxic effects has traditionally been inspired by the more regulatory-orientated risk assessment approaches. However, the increasing need for regulatory priority setting and comparative/ cumulative assessments might in the future convey LCIA principles into the regulatory framework. The same underlying databases on inherent properties of chemicals are already applied in both types of assessment. Similarly, data on the use and exposure of chemicals are needed within both risk assessments and LCA, and the methodologies might therefore benefit from a joint ‘inventory’ database. Outlook  The final outcome of the feasibility study will be an implementation plan suggesting incorporation of core findings in future chemical regulation and related policy areas.  相似文献   

2.
Ecological footprint (EF) is a metric that estimates human consumption of biological resources and products, along with generation of waste greenhouse gas (GHG) emissions in terms of appropriated productive land. There is an opportunity to better characterize land occupation and effects on the carbon cycle in life cycle assessment (LCA) models using EF concepts. Both LCA and EF may benefit from the merging of approaches commonly used separately by practitioners of these two methods. However, few studies have compared or integrated EF with LCA. The focus of this research was to explore methods for improving the characterization of land occupation within LCA by considering the EF method, either as a complementary tool or impact assessment method. Biofuels provide an interesting subject for application of EF in the LCA context because two of the most important issues surrounding biofuels are land occupation (changes, availability, and so on) and GHG balances, two of the impacts that EF is able to capture. We apply EF to existing fuel LCA land occupation and emissions data and project EF for future scenarios for U.S. transportation fuels. We find that LCA studies can benefit from lessons learned in EF about appropriately modeling productive land occupation and facilitating clear communication of meaningful results, but find limitations to the EF in the LCA context that demand refinement and recommend that EF always be used along with other indicators and metrics in product‐level assessments.  相似文献   

3.
Toxicity testing: creating a revolution based on new technologies   总被引:3,自引:0,他引:3  
Biotechnology is evolving at a tremendous rate. Although drug discovery is now heavily focused on high throughput and miniaturized screening, the application of these advances to the toxicological assessment of chemicals and chemical products has been slow. Nevertheless, the impending surge in demands for the regulatory toxicity testing of chemicals provides the impetus for the incorporation of novel methodologies into hazard identification and risk assessment. Here, we review the current and likely future value of these new technologies in relation to toxicological evaluation and the protection of human health.  相似文献   

4.
The history of approaches to evaluating the hazards and risks of chemicals is briefly reviewed. The role of default options (generic approaches based on general knowledge in the absence of specific knowledge to the contrary) is discussed as a part of the risk assessment paradigm advanced by the National Academy of Science/National Research Council in 1983 and 1994. Examples are given of the impact of acquiring specific science to replace default options. An argument is made for developing specific science that would reduce uncertainty in risk assessments. Research on specific science would be guided by identified sources of uncertainty in the risk assessment process. The importance of using a research strategy that builds on human data is emphasized for validating new molecular and cellular biological assessment methods. The paper closes with a discussion of the tension between a hazard-based approach versus quantitative risk assessment in guiding risk management decisions. The former requires limited data, is qualitative, and easy to communicate, while the latter requires substantial data and is difficult to communicate. However, quantitative risk assessment provides a more rational basis for decisions on the allocation of both public and private resources for actions that will effectively minimize overall health risks to the public.  相似文献   

5.
低剂量混合污染生态毒理与风险评价研究进展   总被引:3,自引:0,他引:3  
环境中的化学品往往以低剂量混合形式存在.对单一化学品高剂量暴露下的生态毒性研究成果,难以适用于环境中低剂量混合物的生态毒理效应诊断及风险评价.文中概述了低剂量化学品混合污染生态毒理及风险评价方面的研究进展,主要包括低剂量化学品混合污染诊断的分子毒理研究方法、风险评价方法,并介绍了简单和复杂混合物的风险评价方案.对低剂量混合污染生态毒理与风险评价研究的发展动向提出了见解,指出低剂量化学混合物的研究需要寻找敏感终点,引入多学科手段,积累更多的数据,建立完善、统一的评价体系.  相似文献   

6.
Water is one of many resources, wastes, and pollutants considered in life-cycle assessment (LCA). The widely used indicator for water resources, the total input of water used, is not adequate to assess water resources from a sustainability perspective. More detailed indicators are proposed for water resources in two areas essential to water sustainability: water quantity and water quality. The governing principles for a consideration of water quantity are that (1) the water sources or LCA inputs are renewable and sustainable and (2) the volume of water released or LCA outputs are returned to humans or ecosystems for further use downstream. The governing principle for a consideration of water quality is that the utility of the returned water is not impaired for either humans or ecosystems downstream. Water quantity indicators are defined for water use, consumption, and depletion to reveal the sustainable or nonsustainable nature of the sources. A flexible set of water quality indicators for various factors that may impair water quality are then discussed, including the LCA study choices, technical challenges, and trade-offs involved with such indicators. Indicator selection from this set involves the underlying concern or endpoint represented by the indicator and the level and accuracy of decision-making information that the indicator must provide. With significant differences in emissions among systems studied using LCA and different purposes of the LCA studies themselves, a single, default set of water quality indicators applicable to all systems studied with LCA is problematic. The proposed water quantity and quality indicators for LCA studies are also intended to be compatible with environmental management and reporting systems so that data needs are not duplicated and interpretation for one does not contradict or sow confusion for the other.  相似文献   

7.
Pine chemicals are co‐products of papermaking that are upgraded into diverse products from inks to adhesives. They can also be utilized for energy purposes. This research investigates the carbon and energy life cycle assessment (LCA) of pine chemicals derived from crude tall oil (CTO). The study goals are to determine the cradle‐to‐gate carbon and energy footprint for CTO‐derived chemicals, compare CTO‐derived chemicals to their likely substitutes, and calculate the carbon and energy effects of shifting CTO resources from current chemical production to biodiesel production. The data collected represent 100% of the U.S. and 90% of the European CTO distillation industry for 2011. This analysis is the first industry‐level LCA of pine chemicals. The carbon footprint for CTO‐derived pine chemical products is 50% lower than the likely mix of alternative products, including hydrocarbon resins for rubber, ink, and adhesive, alkyl succinic anhydride for paper size, and heavy fuel oil for heat. Current and proposed European policies could result in CTO being classified as renewable biomass for energy production, creating incentive to convert CTO into fuel rather than chemicals. The differences in the carbon and energy footprints of utilizing CTO for biodiesel versus chemicals are not meaningful when comparing European CTO biodiesel, which displaces conventional diesel, to European CTO‐derived chemicals, which displace the previously discussed substitutes. Therefore, there is no additional carbon or energy benefit that accrues by diverting CTO from current chemical feedstock applications to use for biodiesel production in Europe.  相似文献   

8.
Background and Objective  In the OMNIITOX project 11 partners have the common objective to improve environmental management tools for the assessment of (eco)toxicological impacts. The detergent case study aims at: i) comparing three Procter &c Gamble laundry detergent forms (Regular Powder-RP, Compact Powder-CP and Compact Liquid-CL) regarding their potential impacts on aquatic ecotoxicity, ii) providing insights into the differences between various Life Cycle Impact Assessment (LCIA) methods with respect to data needs and results and iii) comparing the results from Life Cycle Assessment (LCA) with results from an Environmental Risk Assessment (ERA). Material and Methods  The LCIA has been conducted with EDIP97 (chronic aquatic ecotoxicity) [1], USES-LCA (freshwater and marine water aquatic ecotoxicity, sometimes referred to as CML2001) [2, 3] and IMPACT 2002 (covering freshwater aquatic ecotoxicity) [4]. The comparative product ERA is based on the EU Ecolabel approach for detergents [5] and EUSES [6], which is based on the Technical Guidance Document (TGD) of the EU on Environmental Risk Assessment (ERA) of chemicals [7]. Apart from the Eco-label approach, all calculations are based on the same set of physico-chemical and toxicological effect data to enable a better comparison of the methodological differences. For the same reason, the system boundaries were kept the same in all cases, focusing on emissions into water at the disposal stage. Results and Discussion  Significant differences between the LCIA methods with respect to data needs and results were identified. Most LCIA methods for freshwater ecotoxicity and the ERA see the compact and regular powders as similar, followed by compact liquid. IMPACT 2002 (for freshwater) suggests the liquid is equally as good as the compact powder, while the regular powder comes out worse by a factor of 2. USES-LCA for marine water shows a very different picture seeing the compact liquid as the clear winner over the powders, with the regular powder the least favourable option. Even the LCIA methods which result in die same product ranking, e.g. EDIP97 chronic aquatic ecotoxicity and USES-LCA freshwater ecotoxicity, significantly differ in terms of most contributing substances. Whereas, according to IMPACT 2002 and USES-LCA marine water, results are entirely dominated by inorganic substances, the other LCIA methods and the ERA assign a key role to surfactants. Deviating results are mainly due to differences in the fate and exposure modelling and, to a lesser extent, to differences in the toxicological effect calculations. Only IMPACT 2002 calculates the effects based on a mean value approach, whereas all other LCIA methods and the ERA tend to prefer a PNEC-based approach. In a comparative context like LCA the OMNIITOX project has taken the decision for a combined mean and PNEC-based approach, as it better represents the ‘average’ toxicity while still taking into account more sensitive species. However, the main reason for deviating results remains in the calculation of the residence time of emissions in the water compartments. Conclusion and Outlook  The situation that different LCIA methods result in different answers to the question concerning which detergent type is to be preferred regarding the impact category aquatic ecotoxicity is not satisfactory, unless explicit reasons for the differences are identifiable. This can hamper practical decision support, as LCA practitioners usually will not be in a position to choose the ’right’ LCIA method for their specific case. This puts a challenge to the entire OMNIITOX project to develop a method, which finds common ground regarding fate, exposure and effect modelling to overcome the current situa-tion of diverging results and to reflect most realistic conditions.  相似文献   

9.
Numerous methodologies for the life-cycle impact assessment (LCIA) step of life-cycle assessment (LCA) are currently in popular use. These methods, which are based on a single method or level of analysis, are limited to the environmental fates, impact categories, damage functions, and stressors included in the method or model. Because of this, it has been suggested within the LCA community that LCIA data from multiple methods and/or levels of analysis, that is, end-point and midpoint indicators, be used in LCA-based decision analysis to facilitate better or, at least more informed, decision making. In this (two-part) series of articles, we develop and present a series of LCA-based decision analysis models, based on multiattribute value theory (MAVT), which utilize data from multiple LCIA methods and/or levels of analysis. The key to accomplishing this is the recognition of what LCIA damage indicators represent with respect to decision analysis, namely, decision attributes and, in most cases, proxy attributes. The use of proxy attributes in a decision model, however, poses certain challenges, such as the assessment of decision-maker preferences for actual consequences that are only known imprecisely because of inherent limits of both LCA and scientific knowledge. In this article (part I), we provide a brief overview of MAVT and examine some of the decision-theoretic issues and implications of current LCIA methods. We illustrate the application of MAVT to develop a decision model utilizing damage indicators from a single LCIA methodology; and, we identify the decision-theoretic issues that arise when attempting to combine LCIA indicators from multiple methods and/or levels of analysis in a single decision model. Finally, we introduce the use in our methodology of constructed attributes to combine related end-point damage indicators into single decision attributes and the concept and evaluation of proxy attributes.  相似文献   

10.
Understanding the environmental consequences of actions is becoming increasingly important in the field of industrial ecology in general, and in life cycle assessment (LCA) more specifically. However, a consensus on how to operationalize this idea has not been reached. A variety of methods have been proposed and applied to case studies that cover various aspects of consequential life cycle assessment (CLCA). Previous reviews of the topic have focused on the broad agenda of CLCA and how different modeling frameworks fit into its goals. However, explicit examination of the spectrum of methods and their application to the different facets of CLCA are lacking. Here, we provide a detailed review of methods that have been used to construct models of the environmental consequences of actions in CLCA. First, we cover the following structural modeling approaches: (a) economic equilibrium models, (b) system dynamics models, (c) technology choice models, and (d) agent‐based models. We provide a detailed review of particular applications of each model in the CLCA domain. The advantages and disadvantages of each are discussed, and their relationships with CLCA are clarified. From this, we are able to map these models onto the established aspects of CLCA. We learn that structural models alone are not sufficient to quantify the uncertainty distributions of underlying parameters in CLCA, which are essential components of a robust analysis of consequences. To address this, we provide a brief introduction to a counterfactual‐based causal inference approach to parameter identification and uncertainty analysis that is emerging in the CLCA literature. We recommend that one potential research path forward is the establishment of feedback loops between empirical estimates and structural models.  相似文献   

11.
Environmental investigations of former industrial sites often detect the presence of chemicals for which no soil criteria exist and for which regulatory agencies have not derived estimates of toxic potency. This poses a considerable problem for making informed risk management decisions involving sites where such chemicals are present. As a result, a methodology has been developed for making risk-based decisions for chemicals of unknown toxic potency in soil at contaminated sites. The method is based on principles and procedures used by the US Food and Drug Administration (USFDA), the US Environmental Protection Agency (USEPA) and the Canadian Council of Ministers of the Environment (CCME). After analyzing the data on hundreds of carcinogenic and non-carcinogenic substances, the USFDA and other leading researchers have concluded that, if no toxicological data is available on a chemical, exposures less than 1.5?µg/person/day (i.e., 0.02?µg/kg body weight/day) are unlikely to result in appreciable health risks even if the substance was later found to be a carcinogen. To develop maximum soil concentrations that will be protective of human health (i.e., Risk Management Criteria or RMC), the above exposure limit of 0.02?µg/kg body weight/day has been assumed to be protective of risks from exposure to chemicals lacking toxicological data. Using a stochastic risk assessment model for estimating exposures to chemicals from contaminated sites, our analyses indicate that a soil concentration of 2?µg/g would be protective of human health for land uses that include residential, commercial, and industrial development provided no major indirect pathways exist at the site. If indirect pathways exists (e.g., vapor infiltration of soil gases, uptake of chemicals into garden produce, etc.), alternate RMC could be developed, that include such indirect pathways, using the methodology provided in this paper. Used by experienced risk assessors, the approach is a scientifically defensible screening method that will preclude many chemicals from unnecessary evaluation, while allowing risk assessors to focus efforts on chemicals of greater concern and make informed risk management decisions.  相似文献   

12.
Petroleum hydrocarbons may cause risks for humans and the environment that must be properly managed. Some methodologies cluster hundreds of hydrocarbon substances into one single parameter, total petroleum hydrocarbon (TPH) ranged from C10 to C40. Several national policies establish a maximum acceptable concentration in soil to directly consider if a site is seriously contaminated; this scope may be described as a total content approach. Another approach considers TPH division into fractions according to their physico-chemical and toxicological properties, performed in terms of the environmental behavior (aliphatic and aromatic compounds) and the equivalent carbon number (EC). This approach lets us determine the associated risk for human health through the Human Risk Index (HRI). The consequences of application of the total content and fraction approaches is discussed in this study, evaluating the differences in the approach for volatile and semi-volatile hydrocarbons and also in regard to the origin of the contamination. When focusing on volatile substances, the fraction approach is much more restrictive than the total content approach where all oil products are assessed in the same way. When assessing semi-volatile hydrocarbons, their behavior varies depending on the oil product. This work contributes to the implementation of risk-based assessment for petroleum hydrocarbons.  相似文献   

13.
Life cycle assessment (LCA) has only had limited application in the geotechnical engineering discipline, though it has been widely applied to civil engineering systems such as pavements and roadways. A review of previous geotechnical LCAs showed that most studies have tracked a small set of impact categories, such as energy and global warming potential. Accordingly, currently reported environmental indicators may not effectively or fully capture important environmental impacts and tradeoffs associated with geotechnical systems, including those associated with land and soil resources. This research reviewed previous studies, methods, and models for assessment of land use and soil‐related impacts to understand their applicability to geotechnical LCA. The results of this review show that critical gaps remain in current knowledge and practice. In particular, further development or refinement of environmental indicators, impact categories, and cause–effect pathways is needed as they pertain to geotechnical applications—specifically those related to soil quality, soil functions, and the ecosystem services soils provide. In addition, many existing methods emerge from research on land use and land use change related to other disciplines (e.g., agriculture). For applicability to geotechnical projects, the resolution of many of these methods and resulting indicators need to be downscaled from the landscape/macro scale to the project scale. In the near term, practitioners of geotechnical LCA should begin tracking changes to soil properties and report impacts to land and soil resources qualitatively.  相似文献   

14.
Fate, exposure and effect measures provide a basis for the calculation of characterisation factors in Life Cycle Assessment (LCA). Such characterisation factors provide insights into the relative concern of chemical emissions within and across life cycle inventories, in the context of toxicological stress to humans and to ecosystems. A brief overview is presented in this paper of the available options for toxicological characterisation and of associated issues that will need to be addressed in future consensus-building initiatives. An introduction is provided to issues such as: (1) the benefit of measures calculated at midpoints versus at endpoints in the toxicological cause-effect chains (sometimes termed environmental mechanisms); (2) the need to use multimedia models with spatial resolution; (3) the political consequences of accounting for variations in population density; (4) uncertainties in the toxicological potency measures; and (5) the different options for the toxicological endpoint measure(s). These issues are addressed under the headings of Fate and Exposure, Human Health and (aquatic) Ecosystem Health.  相似文献   

15.
The private sector decision making situations which LCA addresses mustalso eventually take theeconomic consequences of alternative products or product designs into account. However, neither the internal nor external economic aspects of the decisions are within the scope of developed LCA methodology, nor are they properly addressed by existing LCA tools. This traditional separation of life cycle environmental assessment from economic analysis has limited the influence and relevance of LCA for decision-making, and left uncharacterized the important relationships and trade-offs between the economic and life cycle environmental performance of alternative product design decision scenarios. Still standard methods of LCA can and have been tightly, logically, and practically integrated with standard methods for cost accounting, life cycle cost analysis, and scenario-based economic risk modeling. The result is an ability to take both economic and environmental performance — and their tradeoff relationships — into account in product/process design decision making.  相似文献   

16.
A review is presented of the use of developmental toxicity testing in the United States and international regulatory assessment of human health risks associated with exposures to pharmaceuticals (human and veterinary), chemicals (agricultural, industrial, and environmental), food additives, cosmetics, and consumer products. Developmental toxicology data are used for prioritization and screening of pharmaceuticals and chemicals, for evaluating and labeling of pharmaceuticals, and for characterizing hazards and risk of exposures to industrial and environmental chemicals. The in vivo study designs utilized in hazard characterization and dose-response assessment for developmental outcomes have not changed substantially over the past 30 years and have served the process well. Now there are opportunities to incorporate new technologies and approaches to testing into the existing assessment paradigm, or to apply innovative approaches to various aspects of risk assessment. Developmental toxicology testing can be enhanced by the refinement or replacement of traditional in vivo protocols, including through the use of in vitro assays, studies conducted in alternative nonmammalian species, the application of new technologies, and the use of in silico models. Potential benefits to the current regulatory process include the ability to screen large numbers of chemicals quickly, with the commitment of fewer resources than traditional toxicology studies, and to refine the risk assessment process through an enhanced understanding of the mechanisms of developmental toxicity and their relevance to potential human risk. As the testing paradigm evolves, the ability to use developmental toxicology data to meet diverse critical regulatory needs must be retained.  相似文献   

17.
Risk assessment for terrestrial birds and mammals is most usually conducted for pesticides in standardized systems based on results of limited tests required for regulatory approval. Increasingly, attempts at risk assessment are being made for other chemicals. Typically for pesticides, dietary tests are extrapolated to a few representative species and risk factors derived as ratios against modeled environmental concentrations. There has been criticism of the validity of some of the standard tests, which makes even this simple approach difficult to justify. Attempts have been made to extrapolate from those values considered more reliable using statistical approaches. Relative sensitivity of test species has been determined. However, reliable extrapolation from laboratory to field remains elusive. Statistically derived values from test results probably generate extremely conservative estimates of environmental no-effect levels. Substantial information on the biology, distribution and food preference of species has, thus far, barely been applied to risk assessment. Other promising approaches, such as species differences in metabolic capacity, population dynamics models, and even sublethal effects on reproductive or behavioural endpoints, cannot in themselves provide simple risk factors either. A simple approach to generate approximate or relative risk factors is explored. While the accumulation of a set of circumstantial evidence might not be regarded as risk assessment in the normal sense, it might offer us a means to extrapolate to a reasonable understanding of likely effects in the field and contribute to a weight-of-evidence approach that informs risk management. It also focuses further studies to those areas and species within the environment most likely to be adversely affected  相似文献   

18.
Abstract

High-throughput methods are now routinely used to rapidly screen chemicals for potential hazard. However, hazard-based decision-making excludes important exposure considerations resulting in an incomplete estimation of chemical safety. Models to estimate exposure exist, but are generally unsuited to keep up with high-throughput demands. The High-Throughput Exposure Assessment Tool (HEAT) is designed to efficiently predict near-field exposure to consumers and workers via inhalation, oral and dermal routes. HEAT is based on well-known modeling algorithms and provides default model parameters to support reasonably conservative exposure estimates. Underlying chemical-specific data are uploaded or entered by the end user. HEAT’s main strength is the flexible tiered screening functionality, which enables exposure estimates for single or multiple chemicals simultaneously. Hypothetical case examples highlighting the application of HEAT to more complex exposure estimates for alternative and aggregate assessments are provided.  相似文献   

19.
20.
Life-cycle assessment (LCA) is a technique for systematically analyzing a product from cradle-to-grave, that is, from resource extraction through manufacture and use to disposal. LCA is a mixed or hybrid analytical system. An inventory phase analyzes system inputs of energy and materials along with outputs of emissions and wastes throughout life cycle, usually as quantitative mass loadings. An impact assessment phase then examines these loadings in light of potential environmental issues using a mixed spectrum of qualitative and quantitative methods. The constraints imposed by inventory's loss of spatial, temporal, dose-response, and threshold information raise concerns about the accuracy of impact assessment. The degree of constraint varies widely according to the environmental issue in question and models used to extrapolate the inventory data. LCA results may have limited value in two areas: (I) local and/ortransient biophysical processes and (2) issues involving biological parameters, such as biodiversity, habitat alteration, and toxicity. The end result is that impact assessment does not measure actual effects or impacts, nor does it calculate the likelihood of an effect or risk Rather, LCA impact assessment results are largely directional environmental indicaton. The accuracy and usefulness of indicators need to be assessed individually and in a circumstance-specific manner prior to decision making. This limits LCAs usefulness as the sole basis for comprehensive assessments and the comparisons of alternatives. In conclusion, LCA may identify potential issues from a systemwide perspective, but more-focused assessments using other analytical techniques are often necessary to resolve the issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号