首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Although benthic diatoms are widely used in ecological studies of aquatic systems, there is still a dearth of data concerning species sensitivities towards several contaminants. Within the same community, different species may respond differently depending on their physiological and ecological characteristics. This lack of knowledge makes specific appropriate risk assessment impossible. To find out whether species sensitivity distribution (SSD) could be used to estimate the risk of herbicide toxicity for diatoms, we need to know whether their sensitivity depends on their physiological and ecological characteristics. We carried out single-species bioassays on 11 diatom species exposed to 8 herbicides. Dose-responses relationships were used to extrapolate the Effective Concentration 5 (EC(5)) and the Effective Concentration 50 (EC(50)) for each exposure. These data were used to fit a SSD curve for each herbicide, and to determine the Hazardous concentration 5 (HC(5)) and 50 (HC(50)). Our results revealed a high level of variability of the sensitivity in the set of species tested. For photosystem-II inhibitor (PSII) herbicides, diatoms species displayed a typical grouping of sensitivity levels consistent with their trophic mode and their ecological guild. N-heterotroph and "motile" guild species were more tolerant of PSII inhibitors, while N-autotroph and "low profile" guild species were more sensitive. Comprehensive SSD curves were obtained for 5 herbicides, but not for sulfonylurea herbicides or for dimetachlor, which had toxicity levels that were below the range of concentration tested. The SSD curves provided the following ranking of toxicity: diuron> terbutryn> isoproturon> atrazine> metolachlor. The HC that affected 5% of the species revealed that, even at the usual environmental concentrations of herbicides, diatom assemblages could be affected, especially by isoproturon, terbutryn, and diuron.  相似文献   

2.
A major watershed restoration effort is underway in south Florida, yet there are significant gaps in scientific information on exposure and risks of contaminants to its natural resources. We conducted a two-tier aquatic screening-level ecological risk assessment for metals that were monitored in sediment at 32 sampling sites in south Florida freshwater canals from 1990–2002. For tier 1, the chemicals (or metals) of potential ecological concern (COPECs) were identified as arsenic, cadmium, chromium, copper, lead, nickel and zinc based on their exceedences of Florida sediment quality guidelines at 10 sites. For tier 2, we used a probabilistic risk assessment method to compare distributions of predicted pore water exposure concentrations of seven metal COPECs with distributions of species response data from laboratory toxicity tests to quantify the likelihood of risk. The overlap of pore water concentrations (90th centile for exposure) for metal COPECs and the effects distributions for arthropods (10th centile of LC50s) and all species (10th centile of chronic NOECs) were used as a measure of potential acute and chronic risks, respectively. Arsenic (25%) in the Holey Land tracts, in Broward County north of Everglades National Park (ENP), and chromium (25%) in the C-111 freshwater system, at the east boundary of ENP, were the most frequently detected COPECs in sediment. Antimony (6%), zinc (6%) and lead (5%) were the least frequently detected COPECs in sediment. The 90th centile concentrations for bulk sediment were highest for zinc (at S-178) and lead (at S-176) in the C-111system. The 90th centile concentration for pore water exposure was highest for arsenic in the Holey Land tracts and lowest for cadmium and chromium. The estimated acute 10th centile concentration for effects was lowest for copper and arthropods. The probabilities of pore water exposures of copper exceeding the estimated acute 10th centile concentration from the species sensitivity distributions (SSD) of acute toxicity data (for arthropods) were 57 and 100% for copper at S-177 and S-178 in the C-111 system, respectively. The probability of pore water exposures of copper exceeding the estimated NOEC 10th centile concentration from the SSD of chronic toxicity data (for all species) was 93 and 100% for copper at S-177 and S-178, respectively. Uncertainties in exposure and effects analysis and risk characterization are identified and discussed. The study presents a straightforward approach to estimate exposure and potential risks of metals detected in sediment from south Florida canals.  相似文献   

3.
The species sensitivity distribution (SSD) model is one of the most commonly used methods for ecological risk assessment based on the potentially affected fraction (PAF) of and the combined PAF (msPAF) as quantitative indicators. There are usually four steps for the development of SSD models and their applications: (1) obtain the toxicity data of the pollutants; (2) fit the SSD curves; (3) calculate the potentially affected fractions (PAFs) of the individual pollutants for the ecological risk assessment of an individual pollutant; and (4) calculate the accumulated multi-substance potentially affected fractions (msPAFs) for the joint ecological risk assessment of multiple pollutants. Among the above mentioned four steps, the first two steps are paramount. In the present study, the following six key issues are discussed: (1) how to select the appropriate species, (2) how to preprocess the toxicity data collected from the ecotoxicity database, (3) how to transform the acute toxicity data into chronic data, (4) how to best fit the toxicity data, (5) how to calculate the msPAF of multiple pollutants, and (6) how to determine the uncertainty of the SSD model”. In response to these questions, several principles were proposed to select appropriate species; three data processing methods, including the geometric mean, weight assigning and using all raw data without processing, were compared to determine the appropriate method for the DDT (dichloro diphenyl trichloroethane) toxicity data preprocessing. The method of acute to chronic ratio (ACR) and binary correlation analysis were contrasted using the zinc toxicity data for the transformation of the acute toxicity data into chronic data. The Burr III, Loglogistic and Lognormal models were compared to determine the best fit model using the DDT toxicity data for invertebrates. The concentration addition or response addition were discussed to calculate msPAF according to the toxic model of action (TMoA). The uncertainties of the SSD models for five heavy metals and for eight polycyclic aromatic hydrocarbons (PAHs) were performed. The comparison of the coefficients of variation (CVs) for the toxicity data and exposure levels in Lake Chaohu for eight polycyclic aromatic hydrocarbons (PAHs) were also presented to demonstrate the uncertainties of the ecological risks assessed by the SSD model based on 5000 Monte Carlo simulations.  相似文献   

4.
Benthic metazoans play a key role as test organisms in toxicity analyses of aquatic ecosystems. This report gives an overview of the species of benthic metazoans used for the assessment of toxicity in freshwater and marine sediments, as well as of the criteria relevant to the choice between test species and procedures. The main applications of these organisms are mono-species bioassays, test-batteries, analyses of benthic communities and bioaccumulation studies. Sediment toxicity assays, including acute and chronic exposures, have been developed for nematodes, insects, oligochaetes, polychaetes, crustaceans, molluscs and echinoderms. At least 30 species of freshwater and 71 species of marine and estuarine benthic metazoans have thus far been used in sediment toxicity bioassays. Although aquatic pollution is a world-wide problem, most sediment toxicity bioassays have been developed for organisms native to Europe and North America. The most common bioassay endpoints are mortality, development, growth and behavioural responses. The value of genetic, biochemical, physiological and pathological responses as toxicity endpoints is currently being investigated. The quest for additional test species and protocols is still a worthwhile endeavour in sediment ecotoxicology.  相似文献   

5.
The goal of this study was to conduct a probabilistic ecological risk assessment for tributyltin (TBT) in surface waters of the Chesapeake Bay watershed. Ecological risk was characterized by comparing the probability distributions of environmental exposure concentrations with the probability distributions of species response data determined from laboratory studies. The overlap of these distributions was a measure of risk to aquatic life. Tributyltin exposure data from the Chesapeake Bay watershed were available from over 3600 water column samples from 41 stations in nine basins from 1985 through 1996. Most of the stations were located in the Virginia waters of Chesapeake Bay, primarily the James, Elizabeth and York Rivers. In Maryland waters of the Bay, various marina, harbor and river systems were also sampled. As expected, the highest environmental concentrations of tributyltin (based on 90th percentiles) were reported in and near marina areas. The sources of TBT causing these high concentrations were primarily boat hulls and painting/depainting operations. Lower concentrations of TBT were reported in open water areas, such as the Potomac River, Choptank River and C and D Canal, where the density of boats was minimal. Temporal data from a ten year data base (1986-1996) from two areas in Virginia showed that TBT water column concentrations have declined since 1987 legislation prohibited the use of TBT paints on recreation boats (<25?m). Acute saltwater and freshwater TBT toxicity data were available for 43 and 23 species, respectively. Acute effects for saltwater species were reported for concentrations exceeding 420?ng/L; the lowest acute value for a freshwater species was 1110?ng/L. The acute 10th percentiles for all saltwater and freshwater species were 320 and 103?ng/L, respectively. The order of sensitivity from most to least sensitive for saltwater trophic groups and corresponding acute 10th percentiles were as follows: zooplankton (5?ng/L), phytoplankton (124?ng/L), benthos (312?ng/L) and fish (1009?ng/L). For freshwater species, the order of sensitivity from most to least sensitive trophic groups and corresponding acute 10th percentiles were: benthos (44?ng/L), zooplankton (400?ng/L), and fish (849?ng/L). Chronic data for both saltwater and freshwater species were limited to a few species in each water type. Based on these limited data, the saltwater and freshwater chronic 10th percentiles were 5 and 102?ng/L, respectively. Limited mesocosm and microcosm studies in saltwater suggested that TBT concentrations less than 50?ng/L did not impact the structure and function of biological communities. The saltwater acute (320?ng/L) and chronic (5?ng/L) 10th percentiles were used to determine ecological risk because all exposure data were from saltwater areas of the Chesapeake Bay watershed. Highest ecological risk was reported for marina areas in Maryland waters of Chesapeake Bay and for areas in Virginia such as the Elizabeth River, Hampton Creek and Sarah Creek. Low ecological risk was reported for areas such as the Potomac River, Choptank River, C and D Canal and Norfolk Harbor. Regulation of TBT on recreational watercraft in 1987 has successfully reduced water column concentrations of this organometallic compound. However, various studies have showed that TBT may remain in the sediment for years and continue to be source for water column exposures.  相似文献   

6.
Bisphenol A (BPA, CAS RN 80-05-7) is a high production volume chemical used as an intermediate in the production of polycarbonate plastic and epoxy resins. During its manufacture and use, some emissions to surface waters are anticipated. Chronic predicted no effect concentrations (PNECs) for aquatic systems are used to support the assessment of potential risks to aquatic organisms in receiving waters. PNECs for a compound are considered protective of populations, communities, and ecosystems. Traditionally, PNECs are derived by taking the lowest no-observed effect concentration (NOEC) from a set of toxicity studies and dividing by an assessment factor (e.g., 10 to 1000). This traditional approach is appropriate for substances with few data, but may not be necessary for substances with many valid studies. For well-studied substances, statistical approaches (i.e., development of Species Sensitivity Distribution or SSD methods) can be used to calculate a PNEC that makes use of the full distribution of available NOEC values. Bisphenol A has an extensive set of aquatic toxicity studies covering diverse taxa including algae, hydra, rotifers, mollusks, crustaceans (both benthic and pelagic), insects, annelids, fish, and amphibians. The full chronic data set was used to calculate PNEC values using four SSD methods: (1) the Hazard Concentration (HC5) approach developed by The Netherlands National Institute of Public Health and the Environment (RIVM), (2) the U.S. Environmental Protection Agency's water quality criteria procedure, (3) SigmaPlot (Systat 2000) commercial software that calculates percentile values, and (4) a distributional method consistent with that used by Environment Canada. Using these approaches, PNEC values for BPA range from 11 to 71 μ g/L. Literature studies suggest that application of an additional assessment factor is unwarranted if an SSD-based PNEC is based on chronic data. SSD-derived PNEC values and the traditionally derived PNEC value of 1.6 μ g/L are then compared to concentrations of BPA that have been measured in North American and European surface waters. Adverse risks to aquatic organisms are not anticipated from measured concentrations of BPA in North American and European surface waters.  相似文献   

7.
At present, at least three and up to five plant species are required to assess the potential risks of herbicides to non-target aquatic plants. Several regulatory authorities are considering whether there should be further requirements based on concerns about the possible selectivity of herbicides (e.g., specific modes of action against dicotyledonous plants). The relative sensitivity of a range of aquatic plants is assessed in our work in order to evaluate the implications of differences in species sensitivity for aquatic risk assessment of herbicides. We therefore present results from ecotoxicological tests performed at Syngenta Crop Protection AG on various aquatic plants and compare them to available studies and results in literature. The criterion used for sensitivity ranking is the EC50 (median effect concentration) value, which allows a better comparison of values from different testing methods and conditions. The overall results obtained in the present work show that the aquatic risk assessment procedure for herbicides based on Lemna sp. and algae is sufficiently protective while identifying potential toxicity to non-target plants. Only few exceptions concerning herbicides with selective modes of action (e.g., auxin simulators) may require additional species testing for proper risk assessment.  相似文献   

8.
The present study assessed the ecological risks of the herbicide tebuthiuron to freshwater fauna and flora of northern Australia's tropical wetlands. Effects characterization utilized acute and chronic toxicity data of tebuthiuron to local freshwater species (three animals and two plants) as well as toxicity data derived from northern hemisphere species. Species sensitivity distributions (SSDs) for four effects scenarios—plant chronic toxicity (NOEC data), plant chronic toxicity (EC/IC50 data), invertebrate and vertebrate chronic toxicity (NOEC data), and vertebrate acute toxicity (LC50 data)—were used to characterize effects and calculate 10, 5, and 1% hazardous concentrations (HCs). Tebuthiuron concentrations affecting 5% of species (i.e., HC5s) for the earlier scenarios were 0.013, 0.093, 9.0, and 97 mg L?1, respectively. Exposure characterization involved the use of historical field monitoring data of tebuthiuron concentrations following application of tebuthiuron to a large infestation of the wetland weed Mimosa pigra (Mimosa). Tebuthiuron concentrations in surface water ranged from below detection to 2.05 mg L?1 and were still measurable up to 10 months following application. A breakpoint regression model was fitted to the field monitoring data, providing a time-dependent estimate of exposure to tebuthiuron. Risk characterization involved the comparison of the SSDs and associated HCs for each of the effects scenarios, with the time-dependent model of tebuthiuron exposure. Modeled tebuthiuron concentrations over the first 12 days post-application were in excess of concentrations required to cause major (i.e., 50% reductions in population numbers) effects to over 85% of freshwater plant species (based on data for phytoplankton and floating macrophytes). Beyond this period and up to 300 d post-application, 10–20% of species were still predicted to be affected. To quantify the probability of prolonged effects, the plant SSDs were compared to a cumulative probability distribution of tebuthiuron measured from 70 d to 293 d post-application. The probability of at least 5% of freshwater plant species experiencing chronic effects due to tebuthiruon at ≥70 d post-application was 58% based on NOEC data and 8% based on EC/IC50 data. Overlap of the 95% confidence limits of the exposure distribution and plant SSDs indicated substantial uncertainty in the risk estimates. Risks of effects to freshwater invertebrates and vertebrates were generally < 1%. It was concluded that tebuthiuron appears to represent a significant and prolonged risk to native freshwater plant species, particularly phytoplankton and floating macrophytes, whereas the risks to freshwater invertebrates and vertebrates appear low. However, from a management perspective, the risks of tebuthiuron (and other herbicides) must be weighed against the known, serious environmental and economic impacts of the target weed, Mimosa. Overall, the outcomes of the risk assessment support the various management options that have been implemented with regard to the use of tebuthiuron to control Mimosa.  相似文献   

9.
10.
Understanding how ecological interactions mitigate the impacts of perturbations such as pesticides in biological communities is an important basic and applied question for ecologists. In aquatic ecosystems, new evidence from microcosm experiments suggests that submerged macrophytes can buffer cladocerans from pulse exposures to the widely used insecticide malathion, and that mitigation increases with macrophyte density. However, whether these results scale up to more complex aquatic communities where ecological interactions such as competition can alter toxicity is unknown. Further, macrophyte abilities to mitigate different insecticide exposure scenarios (i.e. single versus repeated pulses) have never been tested. To address these gaps, we performed a factorial mesocosm experiment examining the influence of four macrophyte treatments (0, 10, 50, or 100 Elodea Canadensis shoots planted per mesocosm) crossed with three malathion exposure scenarios (no insecticide, single pulse, repeated pulses) on aquatic communities containing zooplankton, phytoplankton, periphyton, two snail species, and larval amphibians. In the absence of macrophytes, single malathion pulses caused short-term declines in cladoceran abundance followed by their rapid recovery, which precluded any indirect effects (i.e. trophic cascades). However, repeated malathion pulses caused cladoceran extinctions, resulting in persistent phytoplankton blooms and reduced abundance of one snail species. In contrast, with macrophytes present, even at low density, malathion had no effect on any taxa. We also discovered novel effects of macrophytes on the benthic food web. In the two highest macrophyte treatments, we observed trends of reduced periphyton biomass, decreased abundance of one snail species, and decreased amphibian time to and mass at metamorphosis. To our knowledge, this is the first evidence of negative submerged macrophyte effects on amphibians, a taxa of global conservation concern. Our findings suggest that facilitating macrophytes could be an important strategy for buffering freshwater communities from insecticides, though consideration of their impacts on animal species is necessary.  相似文献   

11.
Predicting the effects of climate change requires understanding complex interactions among multiple abiotic and biotic factors. By influencing key interactions among host species, parasites can affect community and ecosystem structuring. Yet, our understanding of how multiple parasites and abiotic factors interact to alter ecosystem structure remains limited. To empirically test the role of temperature variation and parasites in shaping communities, we used a multigenerational mesocosm experiment composed of four sympatric freshwater crustacean species (isopods and amphipods) that share up to four parasite species. Mesocosms were assigned to one of four different treatments with contrasting seasonal temperatures (normal and elevated) and parasite exposure levels (continuous and arrested (presence or absence of parasite larvae in mesocosm)). We found that parasite exposure and water temperature had interactive effects on the host community. Continuous exposure to parasites altered the community structure and differences in water temperature altered species abundance. The abundance of the amphipod Paracalliope fluviatilis decreased substantially when experiencing continuous parasite exposure and elevated water temperatures. Elevated temperatures also led to parasite-induced mortality in another amphipod host, Paracorophium excavatum. Contrastingly, isopod hosts were affected much less, suggesting increasing temperatures in conjunction with higher parasite exposure might increase their relative abundance in the community. Changes in invertebrate host populations have implications for other species such as fish and birds that consume crustaceans as well as having impacts on ecosystem processes, such as aquatic primary production and nutrient cycling. In light of climate change predictions, parasite exposure and rise in average temperatures may have substantial impacts on communities and ecosystems, altering ecosystem structure and dynamics.  相似文献   

12.
Aquatic invasive plant species cause negative impacts to economies and ecosystems worldwide. Traditional survey methods, while necessary, often do not result in timely detections of aquatic invaders, which can be cryptic, difficult to identify, and exhibit very rapid growth and reproduction rates. Environmental DNA (eDNA) is a relatively new method that has been used to detect multiple types of animals in freshwater and marine ecosystems through tissues naturally shed from the organism into the water column or sediment. While eDNA detection has proven highly effective in the detection of aquatic animals, we know less about the efficacy of eDNA as an effective surveillance tool for aquatic plants. To address this disparity, we designed mesocosm experiments with Elodea species to determine the ability to detect accumulation and degradation of the DNA signal for aquatic plants, followed by field surveillance of the highly invasive Hydrilla verticillata in freshwaters across several U.S. geographic regions. In both lab and field experiments, we designed a high sensitivity quantitative PCR assay to detect the aquatic plant species. In both experiments, plant eDNA detection was successful; we saw accumulation of DNA when plants were introduced to tanks and a decrease in DNA over time after plants were removed. We detected eDNA in the field in areas of known Hydrilla distribution. Employing eDNA detection for aquatic plants will strengthen efforts for early detection and rapid response of invaders in global freshwater ecosystems.  相似文献   

13.
Recent results continue to show the general consensus that ozone-related increases in UV-B radiation can negatively influence many aquatic species and aquatic ecosystems (e.g., lakes, rivers, marshes, oceans). Solar UV radiation penetrates to ecological significant depths in aquatic systems and can affect both marine and freshwater systems from major biomass producers (phytoplankton) to consumers (e.g., zooplankton, fish, etc.) higher in the food web. Many factors influence the depth of penetration of radiation into natural waters including dissolved organic compounds whose concentration and chemical composition are likely to be influenced by future climate and UV radiation variability. There is also considerable evidence that aquatic species utilize many mechanisms for photoprotection against excessive radiation. Often, these protective mechanisms pose conflicting selection pressures on species making UV radiation an additional stressor on the organism. It is at the ecosystem level where assessments of anthropogenic climate change and UV-related effects are interrelated and where much recent research has been directed. Several studies suggest that the influence of UV-B at the ecosystem level may be more pronounced on community and trophic level structure, and hence on subsequent biogeochemical cycles, than on biomass levels per se.  相似文献   

14.
The insecticide load in surface waters does not ordinarily reach concentrations acutely toxic to aquatic fauna. The effects of the low insecticide concentrations typical of natural habitats are still not clear, for they often appear only after relatively long exposure times. To test such a situation, the insecticides lindane and parathion were introduced into a static-with-renewal outdoor aquaria system at concentrations about four and five orders of magnitude lower than their respective 96-h LC50s, and their chronic (about 90 days) effects on the survival rate of freshwater caddisfly larvae were observed. The emergence and hence survival rate of Limnephilus lunatus Curtis was significantly reduced by lindane at 0.1 ng l–1, a value nearly five orders of magnitude lower than the 96-h LC50. Parathion, with acute and subacute toxicity similar to that of lindane, did not significantly alter the emergence rate of this species. In contrast, this substance did produce a significant reduction in emergence rate of the closely related species Limnephilus bipunctatus Curtis at 1 ng l–1, even though this species was significantly less susceptible than L. lunatus to parathion at high concentrations. We conclude that chronic insecticide exposure can be hazardous to freshwater macroinvertebrates even at unexpectedly low concentrations. The low-concentration effects may depend on both species and substance and therefore cannot be predicted from toxicity data at higher concentrations.  相似文献   

15.
庄文  陈青  周凤霞 《生态学报》2016,36(18):5956-5966
随着纳米技术产业的高速发展,大量工程纳米颗粒物(Engineering nano-particles,ENPs)被排放到自然水环境中,因此对其进行生态毒性及环境风险的研究尤为迫切。综述了ENPs在水环境中的毒理学机理及理想模式生物筛选的研究进展。目前的研究表明ENPs的毒性作用机制主要包括两方面:一是影响细胞信号通路,二是氧化应激造成基因表达的变化。此外,光催化活性、细胞表面附着、溶解特性、表面特征、赋存形态、溶剂效应及与其他环境污染物的协同作用也是可能的毒性作用机理。模式生物的筛选与确定在纳米生态毒理学研究中极为重要。鱼类作为水环境中普遍存在的脊椎动物,群落庞大,其具有行为端点敏感性高、且在生物毒性实验中存在明显的量效关系等特征,被认为是研究ENPs生态毒理学最适合的水生模式生物。研究表明针对在ENPs影响下的未成年鱼类的行为特征研究比传统的胚胎发育及致死率研究更为有效。无脊椎动物和浮游植物同样在各种水环境中普遍存在,对环境污染物极为敏感,且对有害物质具有显著的富集放大效应,因此作为模式生物也具有一定的优势。  相似文献   

16.
Acid mine drainage (AMD) continues to threaten water quality in many mining regions globally. Data paucity renders it challenging to inform appropriate water quality management strategies for a succinct scientific understanding of the effects of AMD on freshwater ecosystems. The current study investigated the effects of AMD collected from a defunct coalmine in Mpumalanga, South Africa, on freshwater ecosystems using a risk-based approach on five indigenous species, Adenophlebia auriculata, Burnupia stenochorias, Caridina nilotica, Pseudokirchneriella subcapitata and Oreochromis mossambicus in 2016. Species responded differently to AMD after 96 hours and 240 hours of exposure in static experimental test designs. Burnupia stenochorias was more sensitive to AMD after 96 and 240 hours of exposure, whereas O. mossambicus was tolerant during short-term exposure, but became more sensitive after 240 hours of exposure than the other species tested. The availability of metals in AMD was directly associated with dilution rate. Scenario-specific water quality guidelines for AMD have been derived as 0.122% for short-term and 0.014% for long-term exposure. These may form important indicative dilutions for other AMDs that do not match the scenarios of this study. The toxicity of AMD to a wide range of aquatic species, including field validations, requires further investigation.  相似文献   

17.
Rainbow trout embryos and larvae were continuously exposed (at 12.5 degrees C) to waterborne silver in a flow-through setup, from fertilization to swim-up, at nominal silver concentrations of 0, 0.1, or 1.0 microg/L total silver (as AgNO(3)) at three different water Cl(-) levels (30, 300, and 3,000 microM, added as KCl). Exposures were conducted in synthetic soft water (hardness 20 mg CaCO(3)/L generated from reconstituted reverse osmosis freshwater). Continuous exposure to 1.0 microg/L total silver for 58 d at 30 microM water Cl(-) resulted in a pronounced ionoregulatory disturbance (as indicated by a reduction in whole body Na(+),K(+)-ATPase activity, unidirectional Na(+) uptake [Jin Na(+)], and whole body Na(+) and Cl(-) levels) and a reduction in extractable protein and wet weight. Thus, the mechanism of chronic silver toxicity appears to be similar to that observed during acute silver exposure in juvenile and adult fish, specifically an ionoregulatory disturbance. Higher water Cl(-) levels (300 and 3,000 microM Cl(-)) offered some degree of protection from the ionoregulatory disturbance, with only minor protective effects in terms of mortality. The protective effects of water Cl(-) on the toxicity of silver (as AgNO(3)) appear to be far less during chronic than during acute exposure. Mortality and larval Na(+) concentration, Jin Na(+), and Na(+),K(+)-ATPase activity all appear to be correlated with silver body burden and calculated water Ag(+) during chronic silver exposure. Thus, there appears to be potential to model chronic toxicity but not simply by recalibration of an acute model. A chronic model must be based on real chronic data because the protective effects of various ligands appear to be quantitatively very different from those in the acute situation.  相似文献   

18.
水体腐殖酸对甲氰菊酯的生物可利用性与急性毒性的影响   总被引:1,自引:0,他引:1  
本文在实验室淡水试验系统中,研究了天然水体腐殖酸对甲氰菊酯对草鱼(Ctenopharyngodonidellus)的生物积累和急性毒性的影响。研究结果表明:当水体中腐殖酸浓度为5和10mg/L时,甲氰菊酯对草鱼的生物可利用性以及它对草鱼的急性毒性均呈有意义地减少趋势,而且这种影响的程度随着水体腐殖酸浓度的增加而增大。  相似文献   

19.
Many endemic large branchiopods inhabit ephemeral freshwater ecosystems, including California vernal pools. Hydroperiod, inundation length, has been well studied in these systems that cycle between aquatic and terrestrial phases, but species’ responses to other ecological processes are still poorly known. For example, temporal (plant thatch from the previous terrestrial phase) and spatial (nutrient runoff) factors may have strong effects on emergence and population densities during the aquatic phase. We examined the effects of hydroperiod stability, thatch, and nutrients on the emergence and density of 4 vernal pool endemic species: Branchinecta lynchi (Anostraca), Linderiella occidentalis (Anostraca), Lepidurus packardi (Notostraca), and Cyzicus californicus (Spinicaudata). A full factorial mesocosm experiment was conducted which measured species densities, along with water quality variables. Hydroperiod and thatch differentially affected 3 of the 4 species based on emergence timing and life cycle. Treatments had effects on many water quality variables, and these variables were correlated with densities. These results highlight how hydroperiod stability along with other processes can affect large branchiopod species in temporary freshwater ecosystems. California vernal pools are a greatly reduced habitat rich in endemic and endangered species (including Branchinecta lynchi and Lepidurus packardi), and therefore, these results have implications for conservation and management.  相似文献   

20.
The decline of freshwater fish biodiversity corroborates the trends of unsustainable pesticide usage and increase of disease incidence in the last few decades. Little is known about the role of nonlethal exposure to pesticide, which is not uncommon, and concurrent infection of opportunistic pathogens in species decline. Moreover, preventative measures based on current knowledge of stress biology and an emerging role for epigenetic (especially methylation) dysregulation in toxicity in fish are lacking. We herein report the protective role of lipotropes/methyl donors (like choline, betaine and lecithin) in eliciting primary (endocrine), secondary (cellular and hemato-immunological and histoarchitectural changes) and tertiary (whole animal) stress responses including mortality (50%) in pesticide-exposed (nonlethal dose) and pathogen-challenged fish. The relative survival with betaine and lecithin was 10 and 20 percent higher. This proof of cause-and-effect relation and physiological basis under simulated controlled conditions indicate that sustained stress even due to nonlethal exposure to single pollutant enhances pathogenic infectivity in already nutritionally-stressed fish, which may be a driver for freshwater aquatic species decline in nature. Dietary lipotropes can be used as one of the tools in resurrecting the aquatic species decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号