首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of outdoor wood boilers (OWB) has increased due to cost of fossil fuels. OWB short stacks release particles close to the breathing level, producing high levels of particulate matter ≤2.5 μm in diameter (PM2.5). This assessment determines OWB contribution to local cancer risk and estimates thresholds for acute non-cancer risks. Carcinogenic PAHs in wood smoke (PM2.5) cancer risks range from 2.7 × 10–3 for the upper bound scenario (95% UCL value of PM2.5 (665 μg/m3)) to 7.6 × 10–5 for the lower bound (mean (186 μg/m3)). These risks represent a 7-fold increase of acceptable cancer risk for the lower bound value and 2 orders of magnitude above acceptable levels for the upper bound values. Non-cancer effects such as asthma and cardiopathies include respiratory attacks, hospital emergency room visits, and hospitalizations. Inhaled dose acute risk thresholds of 96, 120, and 250 μg PM 2.5/6 hours are proposed. Operation of an OWB that emits 100 grams PM2.5/h was modeled and found to increase the exposures that exceed the 120-μg-risk level at and in residences within 500 to 1000 feet. The increases are projected to occur during periods of poor air mixing due to decreased wind speeds or inversions. Our analysis proposes a 6-h PM2.5 inhaled dose threshold to predict peak periods of unhealthy air quality instead of 24-h and annual averages standards, which mask peak emissions.  相似文献   

2.

Objective

Ambient fine particulate matter (PM2.5) pollution is currently a major public health concern in Chinese urban areas. However, PM2.5 exposure primarily occurs indoors. Given such, we conducted this study to characterize the indoor-outdoor relationship of PM2.5 mass concentrations for urban residences in Beijing.

Methods

In this study, 24-h real-time indoor and ambient PM2.5 mass concentrations were concurrently collected for 41 urban residences in the non-heating season. The diurnal variation of pollutant concentrations was characterized. Pearson correlation analysis was used to examine the correlation between indoor and ambient PM2.5 mass concentrations. Regression analysis with ordinary least square was employed to characterize the influences of a variety of factors on PM2.5 mass concentration.

Results

Hourly ambient PM2.5 mass concentrations were 3–280 μg/m3 with a median of 58 μg/m3, and hourly indoor counterpart were 4–193 μg/m3 with a median of 34 μg/m3. The median indoor/ambient ratio of PM2.5 mass concentration was 0.62. The diurnal variation of residential indoor and ambient PM2.5 mass concentrations tracked with each other well. Strong correlation was found between indoor and ambient PM2.5 mass concentrations on the community basis (coefficients: r≥0.90, p<0.0001), and the ambient data explained ≥84% variance of the indoor data. Regression analysis suggested that the variables, such as traffic conditions, indoor smoking activities, indoor cleaning activities, indoor plants and number of occupants, had significant influences on the indoor PM2.5 mass concentrations.

Conclusions

PM2.5 of ambient origin made dominant contribution to residential indoor PM2.5 exposure in the non-heating season under the high ambient fine particle pollution condition. Nonetheless, the large inter-residence variability of infiltration factor of ambient PM2.5 raised the concern of exposure misclassification when using ambient PM2.5 mass concentrations as exposure surrogates. PM2.5 of indoor origin still had minor influence on indoor PM2.5 mass concentrations, particularly at 11:00–13:00 and 22:00–0:00. The predictive models suggested that particles from traffic emission, secondary aerosols, particles from indoor smoking, resuspended particles due to indoor cleaning and particles related to indoor plants contributed to indoor PM2.5 mass concentrations in this study. Real-time ventilation measurements and improvement of questionnaire design to involve more variables subject to built environment were recommended to enhance the performance of the predictive models.  相似文献   

3.

Background

Air pollution is one of the most environmental health concerns in the world and has serious impact on human health, particularly in the mucous membranes of the respiratory tract and eyes. However, ocular hazardous effects to air pollutants are scarcely found in the literature.

Design

Panel study to evaluate the effect of different levels of ambient air pollution on lacrimal film cytokine levels of outdoor workers from a large metropolitan area.

Methods

Thirty healthy male workers, among them nineteen professionals who work on streets (taxi drivers and traffic controllers, high pollutants exposure, Group 1) and eleven workers of a Forest Institute (Group 2, lower pollutants exposure compared to group 1) were evaluated twice, 15 days apart. Exposure to ambient PM2.5 (particulate matter equal or smaller than 2.5 μm) was 24 hour individually collected and the collection of tears was performed to measure interleukins (IL) 2, 4, 5 and 10 and interferon gamma (IFN-γ) levels. Data from both groups were compared using Student’s t test or Mann- Whitney test for cytokines. Individual PM2.5 levels were categorized in tertiles (lower, middle and upper) and compared using one-way ANOVA. Relationship between PM2.5 and cytokine levels was evaluated using generalized estimating equations (GEE).

Results

PM2.5 levels in the three categories differed significantly (lower: ≤22 μg/m3; middle: 23–37.5 μg/m3; upper: >37.5 μg/m3; p<0.001). The subjects from the two groups were distributed unevenly in the lower category (Group 1 = 8%; Group 2 = 92%), the middle category (Group 1 = 89%; Group 2 = 11%) and the upper category (Group 1 = 100%). A significant relationship was found between IL-5 and IL-10 and PM2.5 levels of the group 1, with an average decrease of 1.65 pg/mL of IL-5 level and of 0.78 pg/mL of IL-10 level in tear samples for each increment of 50 μg/m3 of PM2.5 (p = 0.01 and p = 0.003, respectively).

Conclusion

High levels of PM2.5 exposure is associated with decrease of IL-5 and IL-10 levels suggesting a possible modulatory action of ambient air pollution on ocular surface immune response.  相似文献   

4.
Abstract

Quantification of PM2.5 (particulate matter <2.5?µm) bound heavy metals and their potential health risks were carried out around a cement manufacturing company in Ewekoro, Nigeria. The PM2.5 samples were collected using Environtech gravimetric sampler. A four-staged sequential extraction procedure was used to fractionate PM2.5 bound chromium (Cr), lead (Pb), aluminum (Al), copper (Cu), and silver (Ag), and further analyzed using inductively coupled plasma mass spectrometry. Chemical speciation results reveal bioavailable levels of Pb (4.05?µg/m3), Cr (10.75?µg/m3), Al (16.47?µg/m3), Cu (4.38E-01?µg/m3), and Ag (1.22E-02?µg/m3) in the airborne particulates. Pb and Cr levels exceeded the World Health Organization allowable limit of 0.5 and 2.5E-05?µg/m3, respectively. The labile phases showed strong indication of the presence of Cr and Cu metal. Excess cancer risks exposure for adults, outdoor workers and children were higher than the acceptable risk target level of 1E-06. Non-carcinogenic health risk estimated using hazard quotients (HQs) and hazard indices (HIs) showed ingestion route within the safe level of HI <1 implying no adverse effect while inhalation route exceeded the safe level for all receptors. Enforcement of pollution control by authorized agencies, and screening of greenbelts as sinks for air pollutants is strongly recommended.  相似文献   

5.

Objective

To test the hypothesis that exposure to fine particulate air pollution (PM2.5) is associated with stillbirth.

Study Design

Geo-spatial population-based cohort study using Ohio birth records (2006-2010) and local measures of PM2.5, recorded by the EPA (2005-2010) via 57 monitoring stations across Ohio. Geographic coordinates of the mother’s residence for each birth were linked to the nearest PM2.5 monitoring station and monthly exposure averages calculated. The association between stillbirth and increased PM2.5 levels was estimated, with adjustment for maternal age, race, education level, quantity of prenatal care, smoking, and season of conception.

Results

There were 349,188 live births and 1,848 stillbirths of non-anomalous singletons (20-42 weeks) with residence ≤10 km of a monitor station in Ohio during the study period. The mean PM2.5 level in Ohio was 13.3 μg/m3 [±1.8 SD, IQR(Q1: 12.1, Q3: 14.4, IQR: 2.3)], higher than the current EPA standard of 12 μg/m3. High average PM2.5 exposure through pregnancy was not associated with a significant increase in stillbirth risk, adjOR 1.21(95% CI 0.96,1.53), nor was it increased with high exposure in the 1st or 2nd trimester. However, exposure to high levels of PM2.5 in the third trimester of pregnancy was associated with 42% increased stillbirth risk, adjOR 1.42(1.06,1.91).

Conclusions

Exposure to high levels of fine particulate air pollution in the third trimester of pregnancy is associated with increased stillbirth risk. Although the risk increase associated with high PM2.5 levels is modest, the potential impact on overall stillbirth rates could be robust as all pregnant women are potentially at risk.  相似文献   

6.

Objective

Limited information is available regarding spatiotemporal variations of particles with median aerodynamic diameter < 2.5 μm (PM2.5) at high resolutions, and their relationships with meteorological factors in Beijing, China. This study aimed to detect spatiotemporal change patterns of PM2.5 from August 2013 to July 2014 in Beijing, and to assess the relationship between PM2.5 and meteorological factors.

Methods

Daily and hourly PM2.5 data from the Beijing Environmental Protection Bureau (BJEPB) were analyzed separately. Ordinary kriging (OK) interpolation, time-series graphs, Spearman correlation coefficient and coefficient of divergence (COD) were used to describe the spatiotemporal variations of PM2.5. The Kruskal-Wallis H test, Bonferroni correction, and Mann-Whitney U test were used to assess differences in PM2.5 levels associated with spatial and temporal factors including season, region, daytime and day of week. Relationships between daily PM2.5 and meteorological variables were analyzed using the generalized additive mixed model (GAMM).

Results

Annual mean and median of PM2.5 concentrations were 88.07 μg/m3 and 71.00 μg/m3, respectively, from August 2013 to July 2014. PM2.5 concentration was significantly higher in winter (P < 0.0083) and in the southern part of the city (P < 0.0167). Day to day variation of PM2.5 showed a long-term trend of fluctuations, with 2–6 peaks each month. PM2.5 concentration was significantly higher in the night than day (P < 0.0167). Meteorological factors were associated with daily PM2.5 concentration using the GAMM model (R 2 = 0.59, AIC = 7373.84).

Conclusion

PM2.5 pollution in Beijing shows strong spatiotemporal variations. Meteorological factors influence the PM2.5 concentration with certain patterns. Generally, prior day wind speed, sunlight hours and precipitation are negatively correlated with PM2.5, whereas relative humidity and air pressure three days earlier are positively correlated with PM2.5.  相似文献   

7.

Background

Fine particulate matter (PM2.5) has been linked to cardiovascular disease, possibly via accelerated atherosclerosis. We examined associations between the progression of the intima-medial thickness (IMT) of the common carotid artery, as an indicator of atherosclerosis, and long-term PM2.5 concentrations in participants from the Multi-Ethnic Study of Atherosclerosis (MESA).

Methods and Results

MESA, a prospective cohort study, enrolled 6,814 participants at the baseline exam (2000–2002), with 5,660 (83%) of those participants completing two ultrasound examinations between 2000 and 2005 (mean follow-up: 2.5 years). PM2.5 was estimated over the year preceding baseline and between ultrasounds using a spatio-temporal model. Cross-sectional and longitudinal associations were examined using mixed models adjusted for confounders including age, sex, race/ethnicity, smoking, and socio-economic indicators. Among 5,362 participants (5% of participants had missing data) with a mean annual progression of 14 µm/y, 2.5 µg/m3 higher levels of residential PM2.5 during the follow-up period were associated with 5.0 µm/y (95% CI 2.6 to 7.4 µm/y) greater IMT progressions among persons in the same metropolitan area. Although significant associations were not found with IMT progression without adjustment for metropolitan area (0.4 µm/y [95% CI −0.4 to 1.2 µm/y] per 2.5 µg/m3), all of the six areas showed positive associations. Greater reductions in PM2.5 over follow-up for a fixed baseline PM2.5 were also associated with slowed IMT progression (−2.8 µm/y [95% CI −1.6 to −3.9 µm/y] per 1 µg/m3 reduction). Study limitations include the use of a surrogate measure of atherosclerosis, some loss to follow-up, and the lack of estimates for air pollution concentrations prior to 1999.

Conclusions

This early analysis from MESA suggests that higher long-term PM2.5 concentrations are associated with increased IMT progression and that greater reductions in PM2.5 are related to slower IMT progression. These findings, even over a relatively short follow-up period, add to the limited literature on air pollution and the progression of atherosclerotic processes in humans. If confirmed by future analyses of the full 10 years of follow-up in this cohort, these findings will help to explain associations between long-term PM2.5 concentrations and clinical cardiovascular events. Please see later in the article for the Editors'' Summary  相似文献   

8.

Background and Purpose

Currently there are more and more studies on the association between short-term effects of exposure to particulate matter (PM) and the morbidity of stroke attack, but few have focused on stroke subtypes. The objective of this study is to assess the relationship between PM and stroke subtypes attack, which is uncertain now.

Methods

Meta-analyses, meta-regression and subgroup analyses were conducted to investigate the association between short-term effects of exposure to PM and the morbidity of different stroke subtypes from a number of epidemiologic studies (from 1997 to 2012).

Results

Nineteen articles were identified. Odds ratio (OR) of stroke attack associated with particular matter (“thoracic particles” [PM10]<10 µm in aerodynamic diameter, “fine particles” [PM2.5]<2.5 µm in aerodynamic diameter) increment of 10 µg/m3 was as effect size. PM10 exposure was related to an increase in risk of stroke attack (OR per 10 µg/m3 = 1.004, 95%CI: 1.001∼1.008) and PM2.5 exposure was not significantly associated with stroke attack (OR per 10 µg/m3 = 0.999, 95%CI: 0.994∼1.003). But when focused on stroke subtypes, PM2.5 (OR per 10 µg/m3 = 1.025; 95%CI, 1.001∼1.049) and PM10 (OR per 10 µg/m3 = 1.013; 95%CI, 1.001∼1.025) exposure were statistically significantly associated with an increased risk of ischemic stroke attack, while PM2.5 (all the studies showed no significant association) and PM10 (OR per 10 µg/m3 = 1.007; 95%CI, 0.992∼1.022) exposure were not associated with an increased risk of hemorrhagic stroke attack. Meta-regression found study design and area were two effective covariates.

Conclusion

PM2.5 and PM10 had different effects on different stroke subtypes. In the future, it''s worthwhile to study the effects of PM to ischemic stroke and hemorrhagic stroke, respectively.  相似文献   

9.

Introduction

Evidence based on ecological studies in China suggests that short-term exposure to particulate matter (PM) is associated with cardiovascular mortality. However, there is less evidence of PM-related morbidity for coronary heart disease (CHD) in China. This study aims to investigate the relationship between acute PM exposure and CHD incidence in people aged above 40 in Shanghai.

Methods

Daily CHD events during 2005–2012 were identified from outpatient and emergency department visits. Daily average concentrations for particulate matter with aerodynamic diameter less than 10 microns (PM10) were collected over the 8-year period. Particulate matter with aerodynamic diameter less than 2.5 microns (PM2.5) were measured from 2009 to 2012. Analyses were performed using quasi-poisson regression models adjusting for confounders, including long-term trend, seasonality, day of the week, public holiday and meteorological factors. The effects were also examined by gender and age group (41–65 years, and >65 years).

Results

There were 619928 CHD outpatient and emergency department visits. The average concentrations of PM10 and PM2.5 were 81.7μg/m3 and 38.6μg/m3, respectively. Elevated exposure to PM10 and PM2.5 was related with increased risk of CHD outpatients and emergency department visits in a short time course. A 10 μg/m3 increase in the 2-day PM10 and PM2.5 was associated with increase of 0.23% (95% CI: 0.12%, 0.34%) and 0.74% (95% CI: 0.44%, 1.04%) in CHD morbidity, respectively. The associations appeared to be more evident in the male and the elderly.

Conclusion

Short-term exposure to high levels of PM10 and PM2.5 was associated with increased risk of CHD outpatient and emergency department visits. Season, gender and age were effect modifiers of their association.  相似文献   

10.
A campaign was conducted to assess the PM1 concentration and elemental composition on the platforms and adjacent outdoor areas of an underground subway station (Imam Khomeini) and a surface subway station (Sadeghiye) in Tehran from June 2014 to November 2014. The respective mean concentrations of PM1 on the platforms and in the outdoor areas of Imam Khomeini station were 42.04 and 30.92 µg/m3 and for Sadeghiye station 31.42 and 26.02 µg/m3. Statistical analyses demonstrated that the platforms of the Imam Khomeini and Sadeghiye stations were influenced by the adjacent ambient air of these stations (p < 0.05). PM1 was found to be highly enriched with Fe on the platforms of metro systems, which were more frequently encountered in the Imam Khomeini station than the Sadeghiye station as 41.06% and 37.73% of the total PM1 mass respectively. Minor elements, particularly Ba, Pb, Cr, Cu, Ni, Mn, Ti, V, and Zn, were elevated for the platform of Imam Khomeini and, to a lesser degree, the platform of Sadeghiye stations, which may be due to abrasion processes between rail tracks, wheels, and brake pads.  相似文献   

11.
The indoor air quality (IAQ) in classrooms highly affects the health and productivity of students. This article aims to clarify seasonal variation in indoor environment and sick building syndromes (SBS) symptoms in an Eastern Mediterranean climate. A series of field measurements were conducted during the fall and winter seasons from October 2011 to March 2012 in 12 naturally ventilated schools located in the Gaza Strip. Data on environmental perception and health symptoms were obtained from 724 students by using a validated questionnaire. The results showed that indoor PM10 and PM2.5 concentrations were 426.3 ± 187.6 μg/m3 and 126.6 ± 94.8 μg/m3, respectively. The CO2 concentrations and ventilation rate widely exceeded their reference values during the winter season. The prevalence rates of general symptoms were relatively high at baseline assessment in the fall season and increased significantly during follow-up in the winter season. Significant increases in disease symptoms such as mucosal irritation and pre-existing asthma symptoms among students could be related to poor indoor air quality. Five distinct groups of SBS symptoms from factor analysis of students’ related symptoms were significantly correlated with PM10 and PM2.5, CO2, ventilation rate, and indoor temperature. As vulnerable children, this situation negatively affects their school performance and health.  相似文献   

12.
Exposure to ambient fine particulate matter (PM2.5) increases risks for cardiovascular disorders (CVD). However, the mechanisms and components responsible for the effects are poorly understood. Based on our previous murine exposure studies, a translational pilot study was conducted in female residents of Jinchang and Zhangye, China, to test the hypothesis that specific chemical component of PM2.5 is responsible for PM2.5 associated CVD. Daily ambient and personal exposures to PM2.5 and 35 elements were measured in the two cities. A total of 60 healthy nonsmoking adult women residents were recruited for measurements of inflammation biomarkers. In addition, circulating endothelial progenitor cells (CEPCs) were also measured in 20 subjects. The ambient levels of PM2.5 were comparable between Jinchang and Zhangye (47.4 and 54.5µg/m3, respectively). However, the levels of nickel, copper, arsenic, and selenium in Jinchang were 82, 26, 12, and 6 fold higher than Zhangye, respectively. The levels of C-reactive protein (3.44±3.46 vs. 1.55±1.13), interleukin-6 (1.65±1.17 vs. 1.09±0.60), and vascular endothelial growth factor (117.6±217.0 vs. 22.7±21.3) were significantly higher in Jinchang. Furthermore, all phenotypes of CEPCs were significantly lower in subjects recruited from Jinchang than those from Zhangye. These results suggest that specific metals may be important components responsible for PM2.5-induced cardiovascular effects and that the reduced capacity of endothelial repair may play a critical role.  相似文献   

13.
The air PM2.5 concentration and its heavy metal content (Fe, Pb, Mn, Ni, As) were measured in the Metropolitan Area of Monterrey, Méxicoin Mexico, an area that is characterized by both very active and diverse industrial activity and intense highway traffic and industrial activity. The 24-h PM2.5 samples were collected in two different zones during a 1-year-long measurement program (February 2008–February 2009). The year PM2.5 average was above 15 μg/m3 exceeding Mexican and international standards. The difference of PM2.5 in each zone was not statistically significant. The greatest metal content was for iron, followed by lead, manganese, nickel and arsenic. The difference in metal content for Pb, Mn, and As was statistically significant.  相似文献   

14.
Fine particulate matters (PM2.5) are known to pose serious health problems compared to other air pollutants. The current study employed air dispersion modeling system (AERMOD) to simulate the concentration of PM2.5 from Tema Oil Refinery (TOR) and to assess the non-cancer risk and mortalities of the exposed population. In addition, the effects of local climatic factors on the distribution and concentration of PM2.5 within the three main seasons (Major Raining Season (MRS), Low Raining Season (LRS) and Dry Season (DS)) were investigated. The AERMOD results showed that both 24-h (38.8 µg m?3) and annual (12.6 µg m?3) PM2.5 concentration levels were in exceedance of the international limits. However, a decreasing trend in seasonal PM2.5 concentrations was observed. Health risk assessment (HRA), indicated by hazard index (HI), revealed that the amount of Al2O3 present in the PM2.5 caused a significant non-carcinogenic health risk to the exposed population (both adults and children) within the Metropolis (HI = 2.4 for adults and HI = 1.5 for children). Additionally, cardiopulmonary disease related mortalities due to PM2.5 exposure (181 deaths for adults and 24 deaths for children) were found high compared to deaths caused by lung cancer (137 deaths for adults and 16 deaths for children).  相似文献   

15.
The aim of this study is to survey the PM10, PM2.5, and PM1 concentrations in rural and urban areas in Tehran province during cold, warm and dust storm days from December 22, 2016 to June 5, 2017 using Grimm Model aerosol spectrometer. During the study period, daily PM10, PM2.5, and PM1 concentrations ranged from 27.2 to 244.96, 8.4 to 77.9, and 6.5 to 56.8 μg/m3 in urban sites, and 22.8 to 286.4, 6 to 41.1, and 2.1 to 20.2 μg/m3 in rural parts, respectively. Particularly, both daily WHO limits for outdoor PM10 (50.0 μg/m3) and PM2.5 (25.0 μg/m3) exceeded in 95% and 83% of the outdoor measurements in winter and 82% and 58% in total sampled days in urban site, respectively. The 24-h average PM10 and PM2.5 concentrations also exceeded by 59% and 18% in winter and by 36% and 14% of all sampling days in rural site, respectively. During the dust storm, the 24-h average PM10, PM2.5, and PM1 concentrations were, respectively 4.7, 2, and 1.96 times higher than those in urban site and 2, 1.7, and 1.3 times more than those in rural site in all sampled days.  相似文献   

16.
To evaluate risk via inhalation exposure of polybrominated diphenyl ethers (PBDEs) in office environment, thirty-six pairs air samples including PM2.5 (particles with aerodynamic diameter less than 2.5 μm), PM10 (particles with aerodynamic diameter less than 10 μm), total suspended particles (TSP) with matching gas phase were collected in office environment in Shanghai, China. The average concentrations of PM2.5, PM10 and TSP were 20.4, 27.2 and 50.3 μg/m3, respectively. Σ15PBDEs mean concentrations in PM2.5, PM10, TSP and gas phase were 51.8, 110.7, 148 and 59.6 pg/m3, respectively. Much more PBDEs distributed in fine fractions than coarse ones. PBDEs congener profiles found in PM2.5, PM10 and TSP (dominated by BDE-209) were different from that in gas phase (dominated by the tri- to penta-BDEs). Approximately 3.20 pg/kg/d PM2.5 bound PBDEs can be inhaled into the lung; 3.62 pg/kg/d PM10-PM2.5(particles with aerodynamic diameter of 2.5-10 μm) bound PBDEs tended to be deposited in the upper part of respiratory system, and the intake of PBDEs via gas-phase was 2.74 pg/kg/d. The exposure of PBDEs was far below the minimal risk levels (MRLs), indicating lower risk from PBDEs via inhalation in the studied office in Shanghai.  相似文献   

17.
BackgroundHeavy fine particulate matter (PM2.5) air pollution occurs frequently in China. However, epidemiological research on the association between short-term exposure to PM2.5 pollution and respiratory disease morbidity is still limited. This study aimed to explore the association between PM2.5 pollution and hospital emergency room visits (ERV) for total and cause-specific respiratory diseases in urban areas in Beijing.MethodsDaily counts of respiratory ERV from Jan 1 to Dec 31, 2013, were obtained from ten general hospitals located in urban areas in Beijing. Concurrently, data on PM2.5 were collected from the Beijing Environmental Protection Bureau, including 17 ambient air quality monitoring stations. A generalized-additive model was used to explore the respiratory effects of PM2.5, after controlling for confounding variables. Subgroup analyses were also conducted by age and gender.ResultsA total of 92,464 respiratory emergency visits were recorded during the study period. The mean daily PM2.5 concentration was 102.1±73.6 μg/m3. Every 10 μg/m3 increase in PM2.5 concentration at lag0 was associated with an increase in ERV, as follows: 0.23% for total respiratory disease (95% confidence interval [CI]: 0.11%-0.34%), 0.19% for upper respiratory tract infection (URTI) (95%CI: 0.04%-0.35%), 0.34% for lower respiratory tract infection (LRTI) (95%CI: 0.14%-0.53%) and 1.46% for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) (95%CI: 0.13%-2.79%). The strongest association was identified between AECOPD and PM2.5 concentration at lag0-3 (3.15%, 95%CI: 1.39%-4.91%). The estimated effects were robust after adjusting for SO2, O3, CO and NO2. Females and people 60 years of age and older demonstrated a higher risk of respiratory disease after PM2.5 exposure.ConclusionPM2.5 was significantly associated with respiratory ERV, particularly for URTI, LRTI and AECOPD in Beijing. The susceptibility to PM2.5 pollution varied by gender and age.  相似文献   

18.

Background and Objective

High concentrations of air pollutants have been linked to increased incidence of stroke in North America and Europe but not yet assessed in mainland China. The aim of this study is to evaluate the association between stroke hospitalization and short-term elevation of air pollutants in Wuhan, China.

Methods

Daily mean NO2, SO2 and PM10 levels, temperature and humidity were obtained from 2006 through 2008. Data on stroke hospitalizations (ICD 10: I60–I69) at four hospitals in Wuhan were obtained for the same period. A time-stratified case-crossover design was performed by season (April-September and October-March) to assess effects of pollutants on stroke hospital admissions.

Results

Pollution levels were higher in October-March with averages of 136.1 µg/m3 for PM10, 63.6 µg/m3 for NO2 and 71.0 µg/m3 for SO2 than in April-September when averages were 102.0 µg/m3, 41.7 µg/m3 and 41.7 µg/m3, respectively (p<.001). During the cold season, every 10 µg/m3 increase in NO2 was associated with a 2.9% (95%C.I. 1.2%–4.6%) increase in stroke admissions on the same day. Every 10 ug/m3 increase in PM10 daily concentration was significantly associated with an approximate 1% (95% C.I. 0.1%–1.4%) increase in stroke hospitalization. A two-pollutant model indicated that NO2 was associated with stroke admissions when controlling for PM10. During the warm season, no significant associations were noted for any of the pollutants.

Conclusions

Exposure to NO2 is significantly associated with stroke hospitalizations during the cold season in Wuhan, China when pollution levels are 50% greater than in the warm season. Larger and multi-center studies in Chinese cities are warranted to validate our findings.  相似文献   

19.
The present study primarily focuses on describing aerosol optical depth (AOD), its distribution pattern and seasonal variation, and modelling Particulate Matter Concentrations in Chennai. The frequency distribution of AOD and PM2.5 demonstrates that AOD can be used as a proxy for estimating PM2.5 in the study region as the occurrence of AOD almost resonates with that of PM2.5. The seasonal variation of AOD and PM2.5 revealed that during the winter (October–January) and summer (February–May) seasons, AOD reasonably followed the trend of PM2.5. However, during the monsoon period, AOD showed random variations. Different models like linear and non-linear regression models and machine learning models such as random forest (RF) have been developed for PM2.5 estimation. The model's performance in different stations and seasons has been assessed. The effect of meteorology and other factors in the model has also been assessed. From linear and non-linear model analysis, AOD was a significant parameter in estimating PM2.5. The Random Forest model was the stable model for the study region, with a model R2 of 0.53 and an RMSE of 15.89 μg/m3. The inclusion of meteorological parameters like relative humidity, wind speed, and wind direction decreased the error in prediction by 17.45 μg/m3. The seasonal and spatial analysis indicates that the prediction capability of models varies with stations and seasons. The best performing model was found to be Model RF, and the model could explain about 53.14% of the variability in PM2.5 concentration occurrence in the study region with a prediction error of 15.89 μg/m3.  相似文献   

20.

Background

Many studies have reported significant associations between exposure to PM2.5 and hospital admissions, but all have focused on the effects of short-term exposure. In addition all these studies have relied on a limited number of PM2.5 monitors in their study regions, which introduces exposure error, and excludes rural and suburban populations from locations in which monitors are not available, reducing generalizability and potentially creating selection bias.

Methods

Using our novel prediction models for exposure combining land use regression with physical measurements (satellite aerosol optical depth) we investigated both the long and short term effects of PM2.5 exposures on hospital admissions across New-England for all residents aged 65 and older. We performed separate Poisson regression analysis for each admission type: all respiratory, cardiovascular disease (CVD), stroke and diabetes. Daily admission counts in each zip code were regressed against long and short-term PM2.5 exposure, temperature, socio-economic data and a spline of time to control for seasonal trends in baseline risk.

Results

We observed associations between both short-term and long-term exposure to PM2.5 and hospitalization for all of the outcomes examined. In example, for respiratory diseases, for every10-µg/m3 increase in short-term PM2.5 exposure there is a 0.70 percent increase in admissions (CI = 0.35 to 0.52) while concurrently for every10-µg/m3 increase in long-term PM2.5 exposure there is a 4.22 percent increase in admissions (CI = 1.06 to 4.75).

Conclusions

As with mortality studies, chronic exposure to particles is associated with substantially larger increases in hospital admissions than acute exposure and both can be detected simultaneously using our exposure models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号