首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acidic extracellular polysaccharide of Ech6 was depolymerized by fuming HCl. The pyruvated sugars were isolated and characterized by methods that included a combination of low-pressure gel-filtration and high-pH anion-exchange chromatographies, methylation linkage analyses, mass (GC-MS and MALDI-TOF MS) and 1H NMR (1D and 2D) spectroscopies. The following pyruvated sugars were obtained: 4,6-O-(1-carboxyethylidene)-D-Galp; 4,6-O-(1-carboxyethylidene)- alpha-D-Galp-(1-->4)-beta-D-GlcAp-(1-->3)-D-Galp; 4,6-O-(1-carboxyethylidene)-alpha-D-Galp-(1-->4)-alpha-D-GlcAp- (1-->3)-alpha-D-Galp-(1-->3)-L-Fucp; 4,6-O-(1-carboxyethylidene)-alpha-D-Galp-(1-->4)-beta-D-GlcAp-(1-->3) -alpha-D-Galp-(1-->3)-L-[beta-D-Glcp-(1-->4)]-Fucp. These oligosaccharides present potential haptenes for the development of specific antibodies and confirm the partial structure proposed previously for the extracellular polysaccharide from Erwinia chrysanthemi Ech6 [Yang, B. Y.; Gray, J. S. S.; Montgomery, R. Int. J. Biol. Macromol., 1994, 16, 306-312].  相似文献   

2.
The chemo-enzymatic synthesis is described of beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->O(CH(2))(6)NH(2) (1), beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->O(CH(2))(6)NH(2) (2), beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->O(CH(2))(6)NH(2) (3), and beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (4), representing fragments of the repeating unit of the Streptococcus pneumoniae serotype 14 capsular polysaccharide. Linear intermediate oligosaccharides 5-8 were synthesized via chemical synthesis, followed by enzymatic galactosylation using bovine milk beta-1,4-galactosyltransferase as a catalyst. The title oligosaccharides form suitable compounds for conjugation with carrier proteins, to be tested as potential vaccines in animal models.  相似文献   

3.
The chemo-enzymatic synthesis is described of tetrasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (1) and octasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (2), representing one and two tetrasaccharide repeating units of Streptococcus pneumoniae serotype 14 capsular polysaccharide. In a chemical approach, the intermediate linear trisaccharide 3 and hexasaccharide 4 were synthesized. Galactose residues were beta-(1-->4)-connected to the internal N-acetyl-beta-D-glucosamine residues by using bovine milk beta-1,4-galactosyltransferase. Both title oligosaccharides will be conjugated to carrier proteins to be tested as potential vaccines in animal models.  相似文献   

4.
The cell walls of Actinomadura viridis contain poly(glycosylglycerol phosphate) chains of complex structure. On the basis of NMR spectroscopy of the polymer and glycosides thereof the following structural units were found: beta-D-Galp3Me-(1-->4)[beta-D-Glcp-(1-->6)]-beta-D-Galp-(1-->1)-++ +snGro (G1); beta-D-Galp-(1-->4)-beta-D-Galp-(1-->1)-snGro (G2); beta-D-Galp3Me-(1-->4)-beta-D-Galp-(1-->1)-snGro (G2a); beta-D-Galp-(1-->1)-snGro (G3); beta-D-Galp-(1-->1)[beta-D-Galp-(1-->2)]-snGro (G4); beta-D-Glcp-(1-->2)-snGro (G5). Glycosides G1, G2 and G3 were the predominant components of the teichoic acid: they formed the polymer chain via phosphodiester bonds involving C-3 of the glycerol residue and C-3 of the galactosyl residue which in turn glycosylates C-1 of the glycerol residue. Whether the different glycosides make up the one chain or whether there are several poly(glycosylglycerol phosphate) chains in the cell wall remains to be determined. It was suggested that the minor component G5 is located at the nonterminal end of the chains. Compound G4 which contains disubstituted glycerol residues (unusual for the teichoic acid) was also found as a minor component; this may be the glycoside of a new type of teichoic acid, or a glycoside on the terminal end of the above mentioned chains. In addition, small amounts of 1,3-poly(glycerol phosphate) chains were found in the cell wall.  相似文献   

5.
A fraction of saponins from Quillaja saponaria Molina, QH-B, was fractionated by consecutive separations on three different reverse-phase HPLC systems. Eight compounds were isolated and the structures of these were elucidated mainly by sugar analysis and NMR spectroscopy. The structures consisted of a quillaic acid substituted with two different trisaccharides at C-3, beta-D-Galp-(1-->2)-[alpha-L-Rhap-(1-->3)]-beta-D-GlcpA and beta-D-Galp-(1-->2)-[beta-D-Xylp-(1-->3)]-beta-D-GlcpA, and a tetra- or pentasaccharide at C-28, beta-D-Xylp-(1-->4)-[beta-D-Glcp-(1-->3)]-alpha-L-Rhap-(1--> 2)-beta-D-Fucp and beta-D-Apif-(1-->3)-beta-D-Xylp-(1-->4)-[beta-D-Glcp-(1-->3) ]-alpha-L- Rhap-(1-->2)-beta-D-Fucp. These compounds were further substituted with an acyl group either at O-3 or O-4 of the fucose residue, which is the sugar linked to C-28 of the quillaic acid.  相似文献   

6.
A pentasaccharide mimic of a fragment of the capsular polysaccharide of Streptococcus pneumoniae type 15C beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[alpha-D-Galp-(1-->2)-beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->OCH2CH2N3) (1) was synthesized in a regio- and stereoselective manner. The 2-azidoethyl-spacered pentasaccharide mimic 1 can be used to construct a neoglycoconjugate antigen.  相似文献   

7.
The mucin-like glycoproteins of Trypanosoma cruzi have novel O-linked oligosaccharides that are acceptors of sialic acid in the trans-sialidase (TcTS) reaction. The transference of sialic acid from host glycoconjugates to the mucins is involved in infection and pathogenesis. The synthesis of the pentasaccharide, beta-D-Galp-(1-->2)-[beta-D-Galp-(1-->3)]-beta-D-Galp-(1-->6)-[beta-D-Galf-(1-->4)]-D-GlcpNAc and the corresponding alditol, previously isolated by reductive beta-elimination of the mucins, is described. The key step was the 6-O-glycosylation of a easily accessible derivative of beta-D-Galf-(1-->4)-D-GlcpNAc with a beta-D-Galp-(1-->2)-[beta-D-Galp-(1-->3)]-D-Galp donor using the trichloroacetimidate method. The beta-linkage was diastereoselectively obtained by the nitrile effect. The pentasaccharide is the major oligosaccharide in the mucins of T. cruzi, G strain and presents two terminal beta-D-Galp residues for possible sialylation by TcTS. A preparative sialylation reaction was performed with its benzyl glycoside and the sialylated product was isolated and characterized. NMR spectroscopic analysis showed that selective monosialylation occurred at the terminal (1-->3) linked galactopyranose.  相似文献   

8.
The structure of the lipopolysaccharide of Haemophilus influenzae mutant strain, RM.118-26, was investigated. Electrospray ionization-mass spectrometry on intact lipopolysaccharide, O-deacylated lipopolysaccharide and core oligosaccharides obtained from lipopolysaccharide after mild acid hydrolysis provided information on the composition and relative abundance of the glycoforms. Oligosaccharide samples were studied in detail using high-field NMR techniques. The structure of the major glycoform containing phosphocholine is identical to the Hex2 glycoform described for H. influenzae RM.118-28 [Risberg, A., Schweda, E.K.H. & Jansson, P.-E. (1997) Eur. J. Biochem. 243, 701-707]. A second major glycoform, containing three hexose residues (Hex3), in which a lactose unit, beta-D-Galp-(1-->4)-beta-D-Glcp, is attached at the O-2 position of the terminal heptose of the inner core element, L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-( 1-->4)-]- L-alpha-D-Hepp-(1-->5)-alpha-Kdo, carries no phosphocholine. Instead this lipopolysaccharide glycoform is partly (40%) substituted by an O-acetyl group linked to the 6-position of the glucose residue in the lactose unit and has the following structure:  相似文献   

9.
O-polysaccharides were isolated from the lipopolysaccharides of Escherichia coli O40 and Shigella dysenteriae type 9 and studied by chemical analyses along with (1)H and (13)C NMR spectroscopy. The following new structure of the O-polysaccharide of E. coli O40 was established: -->2)-beta-D-Galp-(1-->4)-beta-D-Manp-(1-->4)-alpha-D-Galp-(1-->3)-beta-D-GlcpNAc-(1--> TheO-polysaccharide structure of S. dysenteriae type 9 established earlier was revised and found to be identical to the reported structure of the capsular polysaccharide of E. coli K47 and to differ from that of the E. coli O40 polysaccharide in the presence of a 3,4-linked pyruvic acid acetal having the (R)-configuration (RPyr): -->2)-beta-D-Galp3,4(RPyr)-(1-->4)-beta-D-Manp-(1-->4)-alpha-D-Galp-(1-->3)-beta-D-GlcpNAc-(1-->  相似文献   

10.
Structural elucidation of the lipopolysaccharide (LPS) of Haemophilus influenzae, strain Rd, a capsule-deficient type d strain, has been achieved by using high-field NMR techniques and electrospray ionization-mass spectrometry (ESI-MS) on delipidated LPS and core oligosaccharide samples. It was found that this organism expresses heterogeneous populations of LPS of which the oligosaccharide (OS) epitopes are subject to phase variation. ESI-MS of O-deacylated LPS revealed a series of related structures differing in the number of hexose residues linked to a conserved inner-core element, L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp- (1-->4)-]- L-alpha-D-Hepp-(1-->5)-alpha-Kdo, and the degree of phosphorylation. The structures of the major LPS glycoforms containing three (two Glc and one Gal), four (two Glc and two Gal) and five (two Glc, two Gal and one GalNAc) hexoses were substituted by both phosphocholine (PCho) and phosphoethanolamine (PEtn) and were determined in detail. In the major glycoform, Hex3, a lactose unit, beta-D-Galp-(1-->4)-beta-D-Glcp, is attached at the O-2 position of the terminal heptose of the inner-core element. The Hex4 glycoform contains the PK epitope, alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp while in the Hex5 glycoform, this OS is elongated by the addition of a terminal beta-D-GalpNAc residue, giving the P antigen, beta-D-GalpNAc-(1-->3)-alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-D-Glc p. The fully extended LPS glycoform (Hex5) has the following structure. [see text] The structural data provide the first definitive evidence demonstrating the expression of a globotetraose OS epitope, the P antigen, in LPS of H. influenzae. It is noteworthy that the molecular environment in which PCho units are found differs from that observed in an Rd- derived mutant strain (RM.118-28) [Risberg, A., Schweda, E. K. H. & Jansson, P-E. (1997) Eur. J. Biochem. 243, 701-707].  相似文献   

11.
A mixture of oligosaccharides produced by beta-galactosidase using lactose as a substrate was fractionated according to degree of polymerization using gel filtration, followed by high-pH anion-exchange chromatography. The fractions obtained were analyzed using monosaccharide analysis, methylation analysis, mass spectrometry, and NMR spectroscopy. Twelve novel non-reducing oligosaccharides were characterized, namely, [beta-D-Galp-(1-->4)]n-alpha-D-Glcp- (1<-->1)-beta-D-Galp[-(4<--1)-beta-D-Galp]m, with n, m = (1, 2, 3, or 4) and beta-D-Galp-(1-->2)-alpha-D-Glcp- (1<-->1)-beta-D-Galp.  相似文献   

12.
The surface-layer (S-layer) protein of Thermoanaerobacterium thermosaccharolyticum D120-70 contains glycosidically linked glycan chains with the repeating unit structure -->4)[alpha-D-Galp-(1-->2)]-alpha-L-Rhap-(1-->3)[beta-D-Glcp-(1--> 6)] -beta-D-Manp-(1-->4)-alpha-L-Rhap-(1-->3)-alpha-D-Glcp-(1--> . After proteolytic degradation of the S-layer glycoprotein, three glycopeptide pools were isolated, which were analyzed for their carbohydrate and amino-acid compositions. In all three pools, tyrosine was identified as the amino-acid constituent, and the carbohydrate compositions corresponded to the above structure. Native polysaccharide PAGE showed the specific heterogeneity of each pool. For examination of the carbohydrate-protein linkage region, the S-layer glycan chain was partially hydrolyzed with trifluoroacetic acid. 1D and 2D NMR spectroscopy, including a novel diffusion-edited difference experiment, showed the O-glycosidic linkage region beta-D-glucopyranose-->O-tyrosine. No evidence was found of additional sugars originating from a putative core region between the glycan repeating units and the S-layer polypeptide. For the determination of chain-length variability in the S-layer glycan, the different glycopeptide pools were investigated by matrix-assisted laser desorption ionization-time of flight mass spectrometry, revealing that the degree of polymerization of the S-layer glycan repeats varied between three and 10. All masses were assigned to multiples of the repeating units plus the peptide portion. This result implies that no core structure is present and thus supports the data from the NMR spectroscopy analyses. This is the first observation of a bacterial S-layer glycan without a core region connecting the carbohydrate moiety with the polypeptide portion.  相似文献   

13.
Lipopolysaccharide (LPS) is a major virulence determinant of the human bacterial pathogen Haemophilus influenzae. Structural elucidation of the LPS from H. influenzae type b strain RM7004 was achieved by using electrospray ionization mass spectrometry (ESI-MS) and high-field NMR techniques on delipidated LPS and core oligosaccharide samples of LPS. It was found that the organism elaborates a series of related LPS glycoforms having a common inner-core structure, but differing in the number and position of attached hexose residues. LPS glycoforms containing between four and nine hexose residues were structurally characterized. The inner-core element was determined to be L-alpha-D-Hepp-(1-->2)-[PEA-->6]-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-L-alpha-D-Hepp-(1-->5)-[P-->4]-alpha-KDOp-(2-->, a structural feature which has been identified in every H. influenzae strain investigated to date. Two major groups of isomeric glycoforms were characterized in which the terminal Hepp residue of the inner-core element was either substituted at the O-2 position with a beta-D-Galp residue or not. The structures of the major LPS glycoforms were found to have oligosaccharide chain extensions from O-3 of the middle Hepp residue. Glycoforms containing five and six hexose residues were most abundant and were shown to carry the tetrasaccharide unit alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->4)-alpha-D-Glcp at the O-3 position of the middle heptose. This tetrasaccharide displays the globoside trisaccharide (globotriose) as a terminal epitope, a structure that is found on many human cells (P(k) blood group antigen) and which is thought to be an important virulence determinant for H. influenzae. LPS glycoforms were characterized that had further chain extension from the beta-D-Glcp-(1--> residue of the proximal Hepp. In the fully extended LPS (Hex9/Hex8' glycoforms), both the proximal and middle heptose residues carried tetrasaccharide chains displaying terminal globotriose epitopes. In addition, the LPS was found to carry phosphorylcholine and O-acetyl groups.  相似文献   

14.
Wu Z  Ning J  Kong F 《Carbohydrate research》2003,338(21):2203-2212
Beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)](2-3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp were synthesized as their methoxyphenyl glycosides in a concise way with a trisaccharide as the building block.  相似文献   

15.
We have derived oligosaccharides from the capsular polysaccharide of type III group B Streptococcus by enzymatic hydrolysis of a specific backbone glycosidic bond utilizing an endo-beta-galactosidase from Flavobacterium keratolyticus. Enzymatic digestion of the polysaccharide produced oligosaccharide fragments of one or more pentasaccharide repeating units. On the basis of 13C NMR, 1H NMR, and methylation analyses, it was established that the smallest digestion fragment was alpha-D-NeupNAc-(2----3)-beta-D-Galp-(1----4)-[beta-D-Glcp-(1----6 )]- beta-D-GlcpNAc-(1----3)-beta-D-Gal. The isolation of this oligosaccharide is consistent with the susceptibility of the beta-D-Galp-(1----4)-beta-D-Glcp linkage in the backbone of the type III group B streptococcal polysaccharide and confirms that the polysaccharide is composed of a pentasaccharide repeating unit. High resolution 13C NMR spectroscopic studies indicated that, as in the case of the pentasaccharide, the terminal sialic acid residues of the type III group B streptococcal polysaccharide were linked to O-3 and not to O-6 of its branch beta-D-galactopyranosyl residues as had been previously reported (Jennings, H. J., Rosell, K.-G., and Kasper, D. L. (1980) Can. J. Chem. 58, 112-120). This linkage was confirmed in an independent methylation analysis of the type III group B streptococcal polysaccharide. Thin layer chromatogram binding assay and radioactive antigen binding assays with radiolabeled oligosaccharides demonstrated the single repeating unit pentasaccharide oligosaccharide to be poorly antigenic. Increasing oligosaccharide size to a decasaccharide consisting of two repeating units resulted in an 8-fold increase in antigen binding in the direct radioactive antigen binding assay. The results suggest that a region of the immunodeterminant site critical for antibody binding is located in the backbone of the polysaccharide and involves the beta-D-galactopyranose-(1----4) beta-D-glucopyranose bond.  相似文献   

16.
C-H dipolar coupling values were measured for a natural-abundance sample of the pentasaccharide beta-D-Galp-(1-->3)-[alpha-L-Fucp-(1-->4)]-beta-D-GlcNAcp-(1 -->3)-beta-D- Galp-(1-->4)-beta-D-Glcp ('lacto-N-fucopentaose 2') (LNF-2), in a 7.5% solution of dimyristoyl phosphatidylcholine-dihexanoyl phosphatidylcholine bicelle liquid crystals oriented in the NMR magnetic field. Interpretation of the dipolar coupling data and NOE confirms the conformational model for the Lewis(a) trisaccharide epitope based on NOE, molecular dynamics simulations, and scalar coupling data and provided new structural information for the remaining residues of the pentasaccharide. Since residual dipolar coupling provides information on long-range order, it is a valuable complement to other types of NMR data such as NOE and scalar coupling for exploring conformations of complex oligosaccharides.  相似文献   

17.
Wu Z  Kong F 《Carbohydrate research》2004,339(2):377-384
Coupling of the trisaccharide acceptor 2,4,6-tri-O-acetyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-5-O-acetyl-1,2-O-isopropylidene-alpha-D-glucofuranose (2) with the trisaccharide donor 2,3,4,6-tetra-O-benzoyl-alpha-D-annopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (1) gave an alpha-linked hexasaccharide 3, while coupling of 2 with the trisaccharide donor 2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (7) produced alpha- 8 and beta-linked 12 hexasaccharides in a ratio of 3:2. Deprotection of 3, 8, and 12 afforded the analogues of the immunomodulator beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-D-Glcp (A).  相似文献   

18.
Li H  Li Q  Cai MS  Li ZJ 《Carbohydrate research》2000,328(4):611-615
Based on the known anti-metastasis activities of lactosides and galactosides, a galactosyl and a lactosyl trimannoside were prepared via the conventional Koenigs-Knorr and trichloroacetimidate methods, respectively. Through typical deblocking procedures, a tetrasaccharide alpha-D-Galp-(1 --> 2)-alpha-D-Manp-(1 --> 2)-alpha-D-Manp-(1 --> 6)-alpha-D-ManpOCH3 and a pentasaccharide beta-D-Galp-(1 --> 4)-beta-D-Glcp-(1 --> 2)-alpha-D-Manp-(1 --> 2)-alpha-D-Manp-(1 --> 6)-alpha-D-ManpOCH3 were obtained.  相似文献   

19.
The structure of the lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae strain 723 has been elucidated using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS and core oligosaccharide material (OS), as well as ESI-MSn on permethylated dephosphorylated OS. It was found that the LPS contains the common structural element of H. influenzae, l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdo-(2-->6)-Lipid A, in which the beta-D-Glcp residue (GlcI) is substituted by phosphocholine at O-6 and the distal heptose residue (HepIII) by PEtn at O-3, respectively. In a subpopulation of glycoforms O-2 of HepIII was substituted by beta-D-Galp-(1-->4)-beta-D-Glcp-(1--> or beta-D-Glcp-(1-->. Considerable heterogeneity of the LPS was due to the extent of substitution by O-acetyl groups (Ac) and ester-linked glycine of the core oligosaccharide. The location for glycine was found to be at Kdo. Prominent acetylation sites were found to be at GlcI, HepIII, and the proximal heptose (HepI) residue of the triheptosyl moiety. Moreover, GlcI was acetylated at O-3 and/or O-4 and HepI was acetylated at O-2 as evidenced by capillary electrophoresis ESI-MSn in combination with NMR analyses. This is the first study to show that an acetyl group can substitute HepI of the inner-core region of H. influenzae LPS.  相似文献   

20.
Eleven oligosaccharides were purified form the urine of sheep with swainsonine toxicosis induced by the feeding of Astragalus lentiginosus. Oligosaccharides were extracted by charcoal adsorption, chromatographed on Bio-Gel P-2, and partially fractionated by preparative-layer chromatography. Separation into individual compounds was completed by semi-preparative high pressure liquid chromatography. Structures were determined by a combination of high pressure liquid chromatography and exo- and endo- glycosidase action, methanolysis followed by gas-liquid chromatography, methylation analysis, and high resolution nuclear magnetic resonance spectroscopy. Two homologous series of oligosaccharides were identified: (a) alpha-D-Manp-(1----6)-beta-D-Manp-(1----4)-D-GlcpNAc, alpha-D-Manp(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp+ ++-(1----4)-D-GlcpNAc, alpha-D-Manp-(1----2)-alpha-D-Manp(1----3)-[alpha-D-Manp+ ++-(1----6)]-beta-D-Manp-(1----4)-D-GlcpNAc, and alpha-D-Manp-(1----2)-alpha-D-Manp-(1----2)-alpha-D-Manp+ ++-(1----3)-[alpha- D-Manp-(1----6)]-beta-D-Manp-(1----4)-D-GlcpNAc (minor series); (b) alpha-D-Manp-(1----6)-beta-D-Manp-(1----4)-beta-D-GlcpNAc- (1----4)-D-GlcpNAc, alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-beta-D-GlcpNAc-(1----4)-D-GlcpNAc, alpha-D-Manp(1----3)-alpha-D-Manp-(1----6)-beta-D-Manp -(1----4)-beta-D-GlcpNAc- (1----4)-D-GlcpNAc, alpha-D-Manp-(1----6)-alpha-D-Manp-(1----6)-beta-D-Manp++ +-(1----4)-beta-D-GlcpNAc - (1----4)-D-GlcpNAc, alpha-D-Manp-(1----3)-alpha-D-Manp-(1----6)-[alpha-D-Manp -(1----3)]-beta-D- Manp-(1----4)-beta-D-GlcpNAc-(1----4)-D-GlcpNAc, alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-alpha-D-Man p-(1----6)-beta-D- Manp-(1----4)-beta-D-GlcpNAc-(1----4)-D-GlcpNAc, and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-alpha-D-Man p-(1----6)- [alpha-D-Manp-(1----3)]-beta-D-Manp-(1----4)-beta-D-GlcpNAc- (1----4)-D- GlcpNAc (major series).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号