首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the role of rapidly turning over proteins in the T3 regulation of multiple rat hepatic genes. T3 induction of the rapidly responsive mRNA-S14 was markedly inhibited by cycloheximide (1 mg/100 g BW) or emetine (3 mg/100 g) injected ip 30 min before T3 (mRNA-S14 concentration was only 35% of that in T3-treated controls 8.5 h after administration of either protein synthesis inhibitor, P less than 0.01). Cycloheximide exhibited a similar effect on each of five other more slowly responsive T3 regulated genes. When cycloheximide was given 10 h after T3, the expected T3-induced rise of mRNA-S7 activity was completely prevented, and for mRNA-S4 activity the anticipated rise was blunted to 40% of T3-treated control (P less than 0.05). Cycloheximide caused sharp declines in the activity of two other mRNAs, S6 and S8, which because of shorter lag times of response to T3, had already risen when the drug was given. Values for both these mRNAs returned to the baseline hypothyroid level within 6 h of injection of the drug and remained low for a further 8 h (P less than 0.05). The expected deinduction of mRNA-S10 by T3 was also markedly modified. T3 lowered this mRNA to 11% of the hypothyroid control after 8 h, whereas cycloheximide given 30 min before the hormone blunted this fall to only 72% of control (P less than 0.01). Thus there appeared to be a 70% reduction in the rate of T3 induced fall of mRNA-S10. We did not find that cycloheximide caused a generalized decrease in poly (A)+ RNA mass.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
4.
5.
6.
The mRNA of the rat hepatic S14 gene accumulates rapidly after administration of T3 and carbohydrate, making it an excellent model for studies of the effects of dietary and hormonal stimuli at the hepatocellular level. We undertook studies to assess circadian changes in responsivity of this sequence to intragastric sucrose administration combined with insulin injection, and evaluated the capacity of glucagon to reverse these effects. As in the case of T3, the response of mRNA-S14 to carbohydrate in the morning was brisk whereas there was no significant increment when the stimulus was applied in the evening. In confirmation of previous studies, glucagon markedly lowered levels of mRNA-S14 in the evening but exerted no effect in the morning. These results support the concept that the rate of hepatic production of mRNA-S14 in unmanipulated rats is maximal in the evening, thus allowing no further induction by carbohydrate or T3 but permitting reduction by glucagon. Conversely, the rate of production is minimal in the morning, permitting induction by carbohydrate or T3 but allowing no further reduction by glucagon. A major difference between the effects of carbohydrate and those of T3 was the observed failure of carbohydrate to reverse the effect of glucagon in the evening. The effect of glucagon was stimulated by (Bu)2cAMP, and this was reversed by T3. However, T3 did not modify the glucagon-induced increase in hepatic cAMP levels. We therefore conclude that the capacity of T3 to abolish the glucagon effect is mediated at a step distal to the generation of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Acute hormonal effects on the synthesis rate of the cytosolic form of the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (GTP), were investigated using rat hepatocytes maintained in short-term suspension culture. Cells were pulse-labeled with [3H]leucine or [35S]methionine and the rate of synthesis of phosphoenolpyruvate carboxykinase was estimated after immunoprecipitation of cell extracts with specific antibodies or following high-resolution two-dimensional gel electrophoresis of cell proteins. Total RNA was also extracted from cultured cells and subsequently translated in a wheat germ cell-free protein-synthesis system, in order to quantify the level of functional mRNA coding for phosphoenolpyruvate carboxykinase. Glucagon, the single most effective inducer, causes a 15--20-fold increase in the level of specific mRNA in 2 h, accompanied by a similar increase in enzyme synthesis rate. The extent of induction is further amplified about threefold when dexamethasone is added to the culture medium. The synergistic action of dexamethasone does not require pre-exposure of the cells to the glucocorticoid, but on the contrary occurs without lag upon simultaneous addition of glucagon and dexamethasone. The induction of phosphoenolpyruvate carboxykinase mRNA by glucagon is markedly depressed in hepatocytes inhibited for protein synthesis by cycloheximide. Cycloheximide-inhibited cells, however, display a considerable induction of the message after joint stimulation with dexamethasone and glucagon. Thus, the synergistic action of dexamethasone does not require concomitant protein synthesis. These data provide indirect evidence for a primary effect of the glucocorticoids on the expression of the phosphoenolpyruvate carboxykinase gene. Besides glucagon and dexamethasone, the thyroid hormones are shown to influence the rate of phosphoenolpyruvate carboxykinase synthesis in isolated liver cells. The stimulatory effect of 3,5,3'-triiodothyronine (T3) is best demonstrated as a twofold increase in relative rate of enzyme synthesis in cells supplied with T3 plus glucagon, as compared to cells challenged with glucagon alone. The effect of T3 relies on a pretranslational mechanism, as shown by a commensurate increase in functional mRNA coding for phosphoenolpyruvate carboxykinase. Dose-response experiments with T3 as well as dexamethasone demonstrate effects at very low hormone levels, consistent with a role for these hormones as physiological modulators of phosphoenolpyruvate carboxykinase expression.  相似文献   

8.
9.
10.
Hydrocortisone increases rat liver tryptophan oxygenase mRNA activity as measured by a translational assay. Pretreatment of rats with cycloheximide thirty minutes before hydrocortisone administration largely prevents the hormonal induction of tryptophan oxygenase mRNA. Tryptophan oxygenase mRNA activity begins to increase after a lag of at least 30 to 60 minutes after hydrocortisone injection. These results suggest that the synthesis of intermediary protein(s) is required for the induction of tryptophan oxygenase mRNA by glucocorticoids.  相似文献   

11.
12.
Triiodothyronin (T3) is known to induce amphibian metamorphosis but other hormones such as glucocorticoids accelerate T3 action. The increase in plasma concentration of both T3 and glucocorticoids during metamorphic climax is correlated with the transformation of the epidermis from larval type (uncornified) to adult type (cornified). Previously we have shown that T3 induced adult-type 63 Kd keratin gene expression and cornification of the larval epidermis. In this study, we have examined the effects of T3 and hydrocortisone (HC) on the conversion of larval to adult epidermal cells in vitro. When larval epidermal cells were treated with both T3 and HC, they had a synergistic effect on adult-type keratin synthesis (both 63 Kd and 49 Kd keratins) and epidermal cornification. The synergistic effect between T3 and HC required a pretreatment with T3 for 3 days. During this time, addition of HC to cultures containing T3 did not change the amount of 63 Kd keratin mRNA. Thus, HC did not reduce the lag time for epidermal cells to respond to T3. After 4 days of hormone treatment, T3 increased the amount of 63 Kd keratin mRNA 9-fold while T3 and HC induced it 18-fold. When cultures were pretreated with T3 for 3 days, a 1 day treatment with HC was sufficient to obtain the synergistic effect. Thus the induction of 63 Kd keratin gene expression by T3 required a much longer lag (3 days) than the lag required for the synergistic action of T3 and HC (less than 1 day).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Although ovalbumin and conalbumin mRNA accumulate in the same tubular gland cells of the chick oviduct in response to estrogen or progesterone treatment, the kinetics of induction are markedly different. Conalbumin mRNA begins to accumulate within 30 min after estrogen administration, whereas there is a lag of approximately 3 hr before ovalbumin mRNA begins to accumulate, as measured by three independent assays. The kinetics of estrogen-receptor binding to chromatin indicate that these sites are saturated within 15 min of estrogen administration to the chicks, demonstrating that the lag is not due to slow uptake of the steroid. Suboptimal doses of estrogen produce the same lag, but the resultant rate of ovalbumin mRNA accumulation is lower than with an optimal dose. Partial induction of ovalbumin mRNA by a low dose of estrogen does not shorten the lag with an optimal dose. With progesteone, there is a lag of about 2 hr before either ovalbumin or conalbumin mRNA begins to accumulate. Treatment of chicks with hydroxyurea shortens the lag for ovalbumin induction with either hormone. Inhibition of protein synthesis with emetine does not prevent the accumulation of either ovalbumin or conalbumin mRNA. With cycloheximide, however, ovalbumin mRNA accumulation can be prevented. The existence of a lag suggests that there are intermediate steps between the binding of steroid receptors to chromatin and the induction of ovalbumin mRNA. There are basically two models to explain these delays in response: one involving the accumulation of an essential intermediate, and the other involving a rate-limiting translocation of steroid receptors from initial nonproductive chromatin-binding sites to productive sites. Several aspects of the kinetics of ovalbumin mRNA induction are more consistent with the latter model.  相似文献   

14.
15.
Ceruloplasmin (Cp) is a copper-dependent oxidase with roles that include the regulation of iron metabolism, participation in the acute-phase response to inflammation, and antioxidant systems. Although developmental increases in hepatic Cp gene expression and serum activity have been described, the molecular mechanisms that are responsible for this regulation are not fully understood. The studies described here explored the possible role of glucocorticoids and thyroxine (T4) in the early neonatal development of Cp by the administration of these hormones on postnatal Day 1 (24 hr after birth), and the measurement of both hepatic Cp mRNA and serum activity through postnatal Day 10. Administration of the synthetic glucocorticoid hormone, dexamethasone (2 micrograms/g body wt), resulted in an increase in Cp mRNA on Days 3-7 that was accompanied by an increase in serum Cp activity that reached statistical significance at Day 10. Exogenous T4 (2 micrograms/g body wt) significantly increased Cp mRNA 24 hr after administration. Serum Cp activity was also significantly elevated by the early neonatal administration of T4. Furthermore, gestational hypothyroidism resulted in a significant decrease in Cp activity after postnatal Day 3. These data suggest a role for thyroid hormone and possibly glucocorticoids in the normal developmental regulation of Cp.  相似文献   

16.
17.
The hepatic acute phase response is accompanied by increased levels of Gal beta 1-4GlcNAc alpha 2,6-sialyltransferase activity in liver and in circulation. Previous studies suggested that cytokines and glucocorticoids mediate the induction of this sialyltransferase activity. In this study the regulation of sialyltransferase expression by dexamethasone in H35 rat hepatoma cells is assessed by Northern hybridization and enzyme activity assays. Exposure of H35 cells to 1 microM dexamethasone for 24 h causes a 3-4-fold enrichment of sialyltransferase mRNA and a corresponding increase in enzymatic activity. The induction of sialyltransferase mRNA begins within 3 h of dexamethasone treatment and reaches a plateau within 24 h. Sialyltransferase mRNA induction is dose dependent; the minimum concentration of dexamethasone necessary for induction is 10(-8) M, and induction was maximal at 10(-6) M. Induction is sensitive to actinomycin D, suggesting that regulation may be exerted by altering the rate of mRNA synthesis. Puromycin and cycloheximide are ineffective in blocking induction, suggesting that de novo protein synthesis is not required for induction. Finally, dexamethasone alone is sufficient for maximum induction of sialyltransferase mRNA. In contrast, maximal induction of alpha 1-acid glycoprotein, a well studied hepatic acute phase reactant, requires both dexamethasone and cytokines, implying that different pathways exist for the induction of participants in the acute phase response.  相似文献   

18.
19.
Glucocorticoids block the induced secretion of prostaglandins in a variety of biological contexts. We have identified a primary response gene, TIS10, which encodes a mitogen-inducible prostaglandin synthase/cyclooxygenase in Swiss 3T3 cells. TIS10 is distinct from prostaglandin synthase/cyclooxygenase. (EC 1.14.99.1), previously cloned from mouse, man, and sheep. Dexamethasone blocks prostaglandin E2 synthesis by 3T3 cells in response to tetradecanoylphorbol acetate. Dexamethasone also blocks both phorbol ester- and forskolin-induced TIS10 mRNA accumulation. In contrast, phorbol esters, forskolin, and dexamethasone have little or no effect on the levels of prostaglandin synthase/cyclooxygenase mRNA in 3T3 cells. Moreover, dexamethasone does not inhibit induction of TIS8/egr-1, another primary response gene. Inhibition of the synthesis of TIS10 prostaglandin synthase/cyclooxygenase may be a principal mechanism by which glucocorticoids block prostaglandin synthesis and secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号