首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we present three physiologically based pharmacokinetic (PBPK) models for the systemic transport of trichloroethylene (TCE), with a focus on the adipose, or fat tissue. TCE is a widespread environmental contaminant, and has been shown to produce toxic effects in both animals and humans. A key characteristic of TCE is its tendency to accumulate in fat tissue, which has a major impact on the overall systemic disposition of TCE. Here we use PBPK models to predict the dynamics of TCE in the various tissues and organs, including the adipose tissue. The first model utilizes the standard ‘perfusion-limited’ compartmental model for the fat tissue, while the second model uses a ‘diffusion-limited’ model to describe the transport through the adipose tissue. Both of these ODE models are based on ‘well-mixed’ and rapid equilibrium assumptions, and do not take into account the specific and largely heterogeneous physiology of adipose tissue. The third model we discuss is a PBPK hybrid model with an axial-dispersion type model for the adipose tissue. This PDE-based model is designed to capture key physiological heterogeneities of fat tissue, including widely varying fat cell sizes, lipid distribution, and blood flow properties. Model simulations demonstrate that this model may be well-suited to predict the experimental behavior of TCE in adipose tissue using parameter estimation techniques.  相似文献   

2.
3.
Dictyostelium discoideum cells continuously internalize extracellular material, which accumulates in well-characterized endocytic vacuoles. In this study, we describe a new endocytic compartment identified by the presence of a specific marker, the p25 protein. This compartment presents features reminiscent of mammalian recycling endosomes: it is localized in the pericentrosomal region but distinct from the Golgi apparatus. It specifically contains surface proteins that are continuously endocytosed but rapidly recycled to the cell surface and thus absent from maturing endocytic compartments. We evaluated the importance of each clathrin-associated adaptor complex in establishing a compartmentalized endocytic system by studying the phenotype of the corresponding mutants. In knockout cells for mu3, a subunit of the AP-3 clathrin-associated complex, membrane proteins normally restricted to p25-positive endosomes were mislocalized to late endocytic compartments. Our results suggest that AP-3 plays an essential role in the compartmentalization of the endocytic pathway in Dictyostelium.  相似文献   

4.
The mathematical model of the compartmentalized energy transfer system in cardiac myocytes presented includes mitochondrial synthesis of ATP by ATP synthase, phosphocreatine production in the coupled mitochondrial creatine kinase reaction, the myofibrillar and cytoplasmic creatine kinase reactions, ATP utilization by actomyosin ATPase during the contraction cycle, and diffusional exchange of metabolites between different compartments. The model was used to calculate the changes in metabolite profiles during the cardiac cycle, metabolite and energy fluxes in different cellular compartments at high workload (corresponding to the rate of oxygen consumption of 46 mu atoms of O.(g wet mass)-1.min-1) under varying conditions of restricted ADP diffusion across mitochondrial outer membrane and creatine kinase isoenzyme "switchoff." In the complete system, restricted diffusion of ADP across the outer mitochondrial membrane stabilizes phosphocreatine production in cardiac mitochondria and increases the role of the phosphocreatine shuttle in energy transport and respiration regulation. Selective inhibition of myoplasmic or mitochondrial creatine kinase (modeling the experiments with transgenic animals) results in "takeover" of their function by another, active creatine kinase isoenzyme. This mathematical modeling also shows that assumption of the creatine kinase equilibrium in the cell may only be a very rough approximation to the reality at increased workload. The mathematical model developed can be used as a basis for further quantitative analyses of energy fluxes in the cell and their regulation, particularly by adding modules for adenylate kinase, the glycolytic system, and other reactions of energy metabolism of the cell.  相似文献   

5.
Dynamic compartmentalized metabolic models are identified by a large number of parameters, several of which are either non-physical or extremely difficult to measure. Typically, the available data and prior information is insufficient to fully identify the system. Since the models are used to predict the behavior of unobserved quantities, it is important to understand how sensitive the output of the system is to perturbations in the poorly identifiable parameters. Classically, it is the goal of sensitivity analysis to asses how much the output changes as a function of the parameters. In the case of dynamic models, the output is a function of time and therefore its sensitivity is a time dependent function. If the output is a differentiable function of the parameters, the sensitivity at one time instance can be computed from its partial derivatives with respect to the parameters. The time course of these partial derivatives describes how the sensitivity varies in time.When the model is not uniquely identifiable, or if the solution of the parameter identification problem is known only approximately, we may have not one, but a distribution of possible parameter values. This is always the case when the parameter identification problem is solved in a statistical framework. In that setting, the proper way to perform sensitivity analysis is to not rely on the values of the sensitivity functions corresponding to a single model, but to consider the distributed nature of the sensitivity functions, inherited from the distribution of the vector of the model parameters.In this paper we propose a methodology for analyzing the sensitivity of dynamic metabolic models which takes into account the variability of the sensitivity over time and across a sample. More specifically, we draw a representative sample from the posterior density of the vector of model parameters, viewed as a random variable. To interpret the output of this doubly varying sensitivity analysis, we propose visualization modalities particularly effective at displaying simultaneously variations over time and across a sample. We perform an analysis of the sensitivity of the concentrations of lactate and glycogen in cytosol, and of ATP, ADP, NAD+ and NADH in cytosol and mitochondria, to the parameters identifying a three compartment model for myocardial metabolism during ischemia.  相似文献   

6.
7.
Trichloroethylene (TCE) is a widespread and persistent environmental contaminant. Recently, plants, poplar trees in particular, have been investigated as a tool to remove TCE from soil and groundwater. The metabolism of TCE in plants is being investigated for two reasons: one, plant uptake and metabolism represent an important aspect of the environmental fate of the contaminant; two, metabolism pattern and metabolite identification will help assess the applicability of phytoremediation. It was previously shown that TCE metabolites in plants are similar to ones that result from cytochrome P450-mediated oxidation in mammals: trichloroethanol, trichloroacetate and dichloroacetate. Our measurements indicate that one of these metabolites, trichloroethanol, is further glycosylated in tobacco and poplar. The glycoside was detected in all tissues (roots, stems and leaves) in comparable levels, and was at least 10 fold more abundant than free trichloroethanol. The glycoside in tobacco was identified as the ss-D-glucoside of trichloroethanol by comparison of the mass spectra and the chromatographic retention time of its acetylation product to that of the synthesized standard. Trichloroethanol and its glucoside did not persist in plant tissue once plants are removed from TCE contaminated water, indicating further metabolism.  相似文献   

8.
Whole animal testing is an essential part in evaluating the toxicological and pharmacological profiles of chemicals and pharmaceuticals, but these experiments are expensive and cumbersome. A cell culture analog (CCA) system, when used in conjunction with a physiologically based pharmacokinetic (PBPK) model, provides an in vitro supplement to animal studies and the possibility of a human surrogate for predicting human response in clinical trials. A PBPK model mathematically simulates animal metabolism by modeling the absorption, distribution, metabolism, and elimination kinetics of a chemical in interconnected tissue compartments. A CCA uses mammalian cells cultured in interconnected chambers to physically represent the corresponding PBPK. These compartments are connected by recirculating tissue culture medium that acts as a blood surrogate. The purpose of this article is to describe the design and basic operation of the microscale manifestation of such a system. Microscale CCAs offer the potential for inexpensive, relatively high throughput evaluation of chemicals while minimizing demand for reagents and cells. Using microfabrication technology, a three-chamber ("lung"-"liver"-"other") microscale cell culture analog (microCCA) device was fabricated on a 1 in. (2.54 cm) square silicon chip. With a design flow rate of 1.76 microL/min, this microCCA device achieves approximate physiological liquid-to-cell ratio and hydrodynamic shear stress while replicating the liquid residence time parameters in the PBPK model. A dissolved oxygen sensor based on collision quenching of a fluorescent ruthenium complex by oxygen molecules was integrated into the system, demonstrating the potential to integrate real-time sensors into such devices.  相似文献   

9.
Y Chen  V Siewers  J Nielsen 《PloS one》2012,7(8):e42475
As a key intracellular metabolite, acetyl-coenzyme A (acetyl-CoA) plays a major role in various metabolic pathways that link anabolism and catabolism. In the yeast Saccharomyces cerevisiae, acetyl-CoA involving metabolism is compartmentalized, and may vary with the nutrient supply of a cell. Membranes separating intracellular compartments are impermeable to acetyl-CoA and no direct transport between the compartments occurs. Thus, without carnitine supply the glyoxylate shunt is the sole possible route for transferring acetyl-CoA from the cytosol or the peroxisomes into the mitochondria. Here, we investigate the physiological profiling of different deletion mutants of ACS1, ACS2, CIT2 and MLS1 individually or in combination under alternative carbon sources, and study how various mutations alter carbon distribution. Based on our results a detailed model of carbon distribution about cytosolic and peroxisomal acetyl-CoA metabolism in yeast is suggested. This will be useful to further develop yeast as a cell factory for the biosynthesis of acetyl-CoA-derived products.  相似文献   

10.
Our overall objective is to develop a cell culture analogue bioreactor (CCA) that can be used together with a corresponding physiologically based pharmacokinetic model (PBPK) to evaluate molecular mechanisms of toxicity. The PBPK is a mathematical model that divides the body into compartments representing organs, integrating the kinetic, thermodynamic, and anatomical parameters of the animal. The CCA bioreactor is a physical replica of the PBPK; where the PBPK specifies organs, the CCA bioreactor contains compartments with a corresponding cell type that mimics some of the characteristic metabolism of that organ. The device is a continuous, dynamic system composed of multiple cell types that interact through a common circulating cell culture medium. The CCA bioreactor and the model can be coupled to evaluate the plausibility of the molecular mechanism that is input into the model. This paper focuses on the design, development, and characterization of a CCA bioreactor to be used in naphthalene dose response studies. A CCA bioreactor prototype developed previously is improved upon by culturing the cells on microcarrier beads. Microcarrier beads with cells attached can form packed beds with cell culture medium perfusing the beds. In this study, two packed beds of cells, one with L2 cells (rat lung) and one with H4IIE cells (rat hepatoma), are linked in a physiologically relevant arrangement by a common recirculating cell culture medium. Studies of this CCA bioreactor presented here include mixing profiles, effect of reactor environment on cell viability and intracellular glutathione, naphthalene distribution profile, and initial naphthalene dosing studies. Unlike the prototype system there is no detectable response to naphthalene addition; in a companion paper we show that this discrepancy can be explained by differences in liquid residence times in the organ compartments. The perfusion reactor design is shown to have significant operating improvements over prototype designs.  相似文献   

11.
A long-standing question in community ecology is whether food webs are organized in compartments, where species within the same compartment interact frequently among themselves, but show fewer interactions with species from other compartments. Finding evidence for this community organization is important since compartmentalization may strongly affect food web robustness to perturbation. However, few studies have found unequivocal evidence of compartments, and none has quantified the suite of mechanisms generating such a structure. Here, we combine computational tools from the physics of complex networks with phylogenetic statistical methods to show that a large marine food web is organized in compartments, and that body size, phylogeny, and spatial structure are jointly associated with such a compartmentalized structure. Sharks account for the majority of predatory interactions within their compartments. Phylogenetically closely related shark species tend to occupy different compartments and have divergent trophic levels, suggesting that competition may play an important role structuring some of these compartments. Current overfishing of sharks has the potential to change the structural properties, which might eventually affect the stability of the food web.  相似文献   

12.
Neurons are highly polarized cells that consist of three main structural and functional domains: a cell body or soma, an axon, and dendrites. These domains contain smaller compartments with essential roles for proper neuronal function, such as the axonal presynaptic boutons and the dendritic postsynaptic spines. The structure and function of these compartments have now been characterized in great detail. Intriguingly, however, in the last decade additional levels of compartmentalization within the axon and the dendrites have been identified, revealing that these structures are much more complex than previously thought. Herein we examine several types of structural and functional sub‐compartmentalization found in neurons of both vertebrates and invertebrates. For example, in mammalian neurons the axonal initial segment functions as a sub‐compartment to initiate the action potential, to select molecules passing into the axon, and to maintain neuronal polarization. Moreover, work in Drosophila melanogaster has shown that two distinct axonal guidance receptors are precisely clustered in adjacent segments of the commissural axons both in vivo and in vitro, suggesting a cell‐intrinsic mechanism underlying the compartmentalized receptor localization. In Caenorhabditis elegans, a subset of interneurons exhibits calcium dynamics that are localized to specific sections of the axon and control the gait of navigation, demonstrating a regulatory role of compartmentalized neuronal activity in behaviour. These findings have led to a number of new questions, which are important for our understanding of neuronal development and function. How are these sub‐compartments established and maintained? What molecular machinery and cellular events are involved? What is their functional significance for the neuron? Here, we reflect on these and other key questions that remain to be addressed in this expanding field of biology.  相似文献   

13.
Metabolomics can be performed either as an ‘open profiling’ tool where the aim is to measure, usually in a semi-quantitative manner, as many metabolites as possible or perform ‘closed’ or ‘targeted’ analyses where instead a pre-defined set of metabolites are measured. Targeted methods can be designed to be more sensitive and quantitative and so are particularly appropriate to systems biology for quantitative models of systems or when metabolomics is performed in a hypothesis driven manner to test whether a particular pathway is perturbed. We describe a targeted metabolomics assay that quantifies a broad range of over 130 metabolites relevant to cardiac metabolism including the pathways of the citric acid cycle, fatty acid oxidation, glycolysis, the pentose phosphate pathway, amino acid metabolism, the urea cycle, nucleotides and reactive oxygen species using tandem mass spectrometry to produce quantitative, sensitive and robust data. This assay is illustrated by profiling cardiac metabolism in a lamin A/C (Lmna) mouse model of dilated cardiomyopathy (DCM). The model of DCM was characterised by increases in concentrations of proline and methyl-histidine suggestive of increased myofibrillar and collagen degradation, as well as decreases in a number of citric acid cycle intermediates and carnitine derivatives indicating reduced energy metabolism in the dilated heart. These assays could be used for any other cardiac or cardiovascular disease in that they cover central core metabolism and key pathways involved in cardiac metabolism, and may provide a general start for many mammalian systems.  相似文献   

14.
In this review, we examine cardiovascular metabolism from three different, but highly complementary, perspectives. First, from the abstract perspective of a metabolite network, composed of nodes and links. We present fundamental concepts in network theory, including emergence, to illustrate how nature has designed metabolism with a hierarchal modular scale-free topology to provide a robust system of energy delivery. Second, from the physical perspective of a modular spatially compartmentalized network. We review evidence that cardiovascular metabolism is functionally compartmentalized, such that oxidative phosphorylation, glycolysis, and glycogenolysis preferentially channel ATP to ATPases in different cellular compartments, using creatine kinase and adenylate kinase to maximize efficient energy delivery. Third, from the dynamics perspective, as a network of dynamically interactive metabolic modules capable of self-oscillation. Whereas normally, cardiac metabolism exists in a regime in which excitation-metabolism coupling closely matches energy supply and demand, we describe how under stressful conditions, the network can be pushed into a qualitatively new dynamic regime, manifested as cell-wide oscillations in ATP levels, in which the coordination between energy supply and demand is lost. We speculate how this state of "metabolic fibrillation" leads to cell death if not corrected and discuss the implications for cardioprotection.  相似文献   

15.
16.
Dash RK  Li Y  Kim J  Beard DA  Saidel GM  Cabrera ME 《PloS one》2008,3(9):e3168
Control mechanisms of cellular metabolism and energetics in skeletal muscle that may become evident in response to physiological stresses such as reduction in blood flow and oxygen supply to mitochondria can be quantitatively understood using a multi-scale computational model. The analysis of dynamic responses from such a model can provide insights into mechanisms of metabolic regulation that may not be evident from experimental studies. For the purpose, a physiologically-based, multi-scale computational model of skeletal muscle cellular metabolism and energetics was developed to describe dynamic responses of key chemical species and reaction fluxes to muscle ischemia. The model, which incorporates key transport and metabolic processes and subcellular compartmentalization, is based on dynamic mass balances of 30 chemical species in both capillary blood and tissue cells (cytosol and mitochondria) domains. The reaction fluxes in cytosol and mitochondria are expressed in terms of a general phenomenological Michaelis-Menten equation involving the compartmentalized energy controller ratios ATP/ADP and NADH/NAD(+). The unknown transport and reaction parameters in the model are estimated simultaneously by minimizing the differences between available in vivo experimental data on muscle ischemia and corresponding model outputs in coupled with the resting linear flux balance constraints using a robust, nonlinear, constrained-based, reduced gradient optimization algorithm. With the optimal parameter values, the model is able to simulate dynamic responses to reduced blood flow and oxygen supply to mitochondria associated with muscle ischemia of several key metabolite concentrations and metabolic fluxes in the subcellular cytosolic and mitochondrial compartments, some that can be measured and others that can not be measured with the current experimental techniques. The model can be applied to test complex hypotheses involving dynamic regulation of cellular metabolism and energetics in skeletal muscle during physiological stresses such as ischemia, hypoxia, and exercise.  相似文献   

17.
Metallothionein (MT) is a generic name for certain families of structurally rather variable metal-binding proteins. While purely chemical or biological approaches failed to establish a single physiologic function for MTs in any species, a combination of chemical and biological approaches and recent progress in defining the low but significant concentrations of cytosolic free zinc(II) ions have demonstrated that mammalian MTs function in cellular zinc metabolism in specific ways that differ from conventional knowledge about any other metalloprotein. Their thiolate coordination environments make MTs redox-active zinc proteins that exist in different molecular states depending on the availability of cellular zinc and the redox poise. The zinc affinities of MTs cover a range of physiologic zinc(II) ion concentrations and are modulated. Oxidative conditions make more zinc available, while reductive conditions make less zinc available. MTs move from the cytosol to cellular compartments, are secreted from cells, and are taken up by cells. They provide cellular zinc ions in a chemically available form and participate in cellular metal muffling: the combination of physiologic buffering in the steady state and the cellular redistribution and compartmentalization of transiently elevated zinc(II) ion concentrations in the pre-steady state. Cumulative evidence indicates that MTs primarily have a redox-dependent function in zinc metabolism, rather than a zinc-dependent function in redox metabolism.  相似文献   

18.
19.
PBPK models in risk assessment--A focus on chloroprene   总被引:2,自引:0,他引:2  
Mathematical models are increasingly being used to simulate events in the exposure-response continuum, and to support quantitative predictions of risks to human health. Physiologically based pharmacokinetic (PBPK) models address that portion of the continuum from an external chemical exposure to an internal dose at a target site. Essential data needed to develop a PBPK model include values of key physiological parameters (e.g., tissue volumes, blood flow rates) and chemical specific parameters (rate of chemical absorption, distribution, metabolism, and elimination) for the species of interest. PBPK models are commonly used to: (1) predict concentrations of an internal dose over time at a target site following external exposure via different routes and/or durations; (2) predict human internal concentration at a target site based on animal data by accounting for toxicokinetic and physiological differences; and (3) estimate variability in the internal dose within a human population resulting from differences in individual pharmacokinetics. Himmelstein et al. [M.W. Himmelstein, S.C. Carpenter, P.M. Hinderliter, Kinetic modeling of beta-chloroprene metabolism. I. In vitro rates in liver and lung tissue fractions from mice, rats, hamsters, and humans, Toxicol. Sci. 79 (1) (2004) 18-27; M.W. Himmelstein, S.C. Carpenter, M.V. Evans, P.M. Hinderliter, E.M. Kenyon, Kinetic modeling of beta-chloroprene metabolism. II. The application of physiologically based modeling for cancer dose response analysis, Toxicol. Sci. 79 (1) (2004) 28-37] developed a PBPK model for chloroprene (2-chloro-1,3-butadiene; CD) that simulates chloroprene disposition in rats, mice, hamsters, or humans following an inhalation exposure. Values for the CD-PBPK model metabolic parameters were obtained from in vitro studies, and model simulations compared to data from in vivo gas uptake studies in rats, hamsters, and mice. The model estimate for total amount of metabolite in lung correlated better with rodent tumor incidence than did the external dose. Based on this PBPK model analytical approach, Himmelstein et al. [M.W. Himmelstein, S.C. Carpenter, M.V. Evans, P.M. Hinderliter, E.M. Kenyon, Kinetic modeling of beta-chloroprene metabolism. II. The application of physiologically based modeling for cancer dose response analysis, Toxicol. Sci. 79 (1) (2004) 28-37; M.W. Himmelstein, R. Leonard, R. Valentine, Kinetic modeling of beta-chloroprene metabolism: default and physiologically-based modeling approaches for cancer dose response, in: IISRP Symposium on Evaluation of Butadiene & Chloroprene Health Effects, September 21, 2005, TBD--reference in this proceedings issue of Chemical-Biological Interactions] propose that observed species differences in the lung tumor dose-response result from differences in CD metabolic rates. The CD-PBPK model has not yet been submitted to EPA for use in developing the IRIS assessment for chloroprene, but is sufficiently developed to be considered. The process that EPA uses to evaluate PBPK models is discussed, as well as potential applications for the CD-PBPK model in an IRIS assessment.  相似文献   

20.
This last decade, many efforts were undertaken to understand how coenzymes, including vitamins, are synthesized in plants. Surprisingly, these metabolic pathways were often “quartered” between different compartments of the plant cell. Among these compartments, mitochondria often appear to have a key role, catalyzing one or several steps in these pathways. In the present review we will illustrate these new and important biosynthetic functions found in plant mitochondria by describing the most recent findings about the synthesis of two vitamins (folate and biotin) and one non-vitamin coenzyme (lipoate). The complexity of these metabolic routes raise intriguing questions, such as how the intermediate metabolites and the end-product coenzymes are exchanged between the various cellular territories, or what are the physiological reasons, if any, for such compartmentalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号