首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The viability of using thiazole orange as an alternative to ethidium bromide in a fluorescent intercalator displacement (FID) assay is explored by profiling the DNA binding affinity and sequence selectivity of netropsin. Utilizing a library of hairpin deoxyoligonucleotides containing all possible four base-pair sequences, the method provides a high resolution profile of the DNA binding properties of small molecules in a high throughput format.  相似文献   

2.
Four hairpin polyamides bearing subtle N- and C-terminal substitutions were examined in a fluorescent intercalator displacement (FID) assay enlisting a library of 512 DNA hairpins that contain all possible five base pair sequences in a challenging probe of its capabilities for establishing DNA binding sequence selectivity. Not only did the assay define the global sequence selectivity expected based on known structural interactions and Dervan's pairing rules establishing the utility of the method for characterizing such polyamides, but previously unappreciated subtle substituent effects on global sequence selectivity were also revealed. Thus, we report the discovery of a novel five base pair high affinity binding site of the form 5'-WWCWW (vs 5'-WGWWW) for the polyamide ImPyPy-gamma-PyPyPy-beta-Dp and its structural basis.  相似文献   

3.
A series of saturated heterocyclic analogues of distamycin were prepared and examined. A fluorescent intercalator displacement (FID) assay conducted on p[dA]-p[dT] DNA to obtain C(50) values and a hairpin deoxyoligonucleotide containing an A/T-rich binding site was used to evaluate DNA binding affinity. It is observed that saturated heterocycles greatly reduce the DNA binding relative to distamycin.  相似文献   

4.
Earlier, a new class of compounds, amphiphilic derivatives of 1,3-diazaadamantanes, capable of facilitating the strand exchange in the system of short oligonucleotides, has been discovered. Longer hydrophobic side chains in 1,3-diazaadamantanes have been found to promote stronger acceleration of the reaction. In this study, the interaction of two 1,3-diazaadamantane derivatives containing different side chains with DNA was investigated using optical methods. Concentrations of micelle formation by the 1,3-diazaadamantanes, as well as the ranges of concentrations where the compounds/water mixtures exist in the form of true solutions, were determined based on the increase in the fluorescence intensity of 1-anilinonaphthalene-8-sulfonate probe. The affinities of 1,3-diazaadamantanes to DNA were determined with fluorescent intercalator displacement (FID) assay. A significant increase in the hydrodynamic volume of short DNA hairpins in complexes with 1,3-diazaadamantanes was revealed by the estimation of the fluorescence polarization of ethidium bromide probe bound in the hairpins. The intermolecular association of DNA hairpins upon binding with 1,3-diazaadamantanes was confirmed by Förster resonance energy transfer in an equimolar mixture of hairpins fluorescently labeled with Cy-3 or Cy5. In the study, the number of positive charges on 1,3-diazaadamantane derivatives that contain side chains of different lengths was demonstrated to affect their affinity to DNA, while longer hydrophobic side chains ensured more efficient interaction between the DNA duplexes that may facilitate DNA strand exchange.  相似文献   

5.
The phenanthridinium dye ethidium bromide is a prototypical DNA intercalating agent. For decades, this anti-trypanosomal agent has been known to intercalate into nucleic acids, with little preference for particular sequences. Only polydA-polydT tracts are relatively refractory to ethidium intercalation. In an effort to tune the sequence selectivity of known DNA binding agents, we report here the synthesis and detailed characterization of the mode of binding to DNA of a novel ethidium derivative possessing two guanidinium groups at positions 3 and 8. This compound, DB950, binds to DNA much more tightly than ethidium and exhibits distinct DNA-dependent absorption and fluorescence properties. The study of the mode of binding to DNA by means of circular and electric linear dichroism revealed that, unlike ethidium, DB950 forms minor groove complexes with AT sequences. Accurate quantification of binding affinities by surface plasmon resonance using A(n)T(n) hairpin oligomer indicated that the interaction of DB950 is over 10-50 times stronger than that of ethidium and comparable to that of the known minor groove binder furamidine. DB950 interacts weakly with GC sites by intercalation. DNase I footprinting experiments performed with different DNA fragments established that DB950 presents a pronounced selectivity for AT-rich sites, identical with that of furamidine. The replacement of the amino groups of ethidium with guanidinium groups has resulted in a marked gain of both affinity and sequence selectivity. DB950 provides protection against DNase I cleavage at AT-containing sites which frequently correspond to regions of enhanced cleavage in the presence of ethidium. Although DB950 maintains a planar phenanthridinium chromophore, the compound no longer intercalates at AT sites. The guanidinium groups of DB950, just like the amidinium group of furamidine (DB75), are the critical determinants for recognition of AT binding sites in DNA. The chemical modulation of the ethidium exocyclic amines is a profitable option to tune the nucleic acid recognition properties of phenylphenanthridinium dyes.  相似文献   

6.
A series of thio- and selenopyrylium analogues of 2,4-di(4-dimethylaminophen-yl)-6-methylthiopyrylium iodide were prepared in five steps from 4-dimethylaminophenyl-propargyl aldehyde and the corresponding lithium acetylide. When bound to DNA, all of the dyes absorb at wavelengths >600nm, which avoids the hemoglobin band I maximum at 575nm. The binding of the series of dyes to double-stranded DNA was examined spectrophotometrically and by isothermal titration calorimetry to determine binding constants, by a topoisomerase I DNA unwinding assay, by competition dialysis with [poly(dGdC)](2) and [poly(dAdT)](2), and by ethidium bromide displacement studies to examine propensities for intercalation, and by circular dichroism studies. The dyes were found to show mixed binding modes.  相似文献   

7.
A simple method for the detection of sequence- and structural-selective ligand binding to nucleic acids is described. The method is based on the commonly used thermal denaturation method in which ligand binding is registered as an elevation in the nucleic acid melting temperature (Tm). The method can be extended to yield a new, higher -throughput, assay by the simple expediency of melting designed mixtures of polynucleotides (or oligonucleotides) with different sequences or structures of interest. Upon addition of ligand to such mixtures at low molar ratios, the Tm is shifted only for the nucleic acid containing the preferred sequence or structure. Proof of principle of the assay is provided using first a mixture of polynucleotides with different sequences and, second, with a mixture containing DNA, RNA and two types of DNA:RNA hybrid structures. Netropsin, ethidium, daunorubicin and actinomycin, ligands with known sequence preferences, were used to illustrate the method. The applicability of the approach to oligonucleotide systems is illustrated by the use of simple ternary and binary mixtures of defined sequence deoxyoligonucleotides challenged by the bisanthracycline WP631. The simple mixtures described here provide proof of principle of the assay and pave the way for the development of more sophisticated mixtures for rapidly screening the selectivity of new nucleic acid binding compounds.  相似文献   

8.
Small molecules, like some antibiotics and anticancer agents that bind DNA with high specificity, can represent a relevant alternative as ligands in affinity processes for plasmid DNA (pDNA) purification. In the current study, pDNA binding affinities of berberine, berenil, kanamycin, and neomycin were evaluated by a competitive displacement assay with ethidium bromide using a fluorimetric titration technique. The binding between pDNA and ethidium bromide was tested in different buffer conditions, varying the type and the salt concentration, and was performed in both the absence and presence of the studied compounds. The results showed that the minor groove binder berenil has the higher pDNA binding constant. Chromatographic experiments using a derivatized column with berenil as ligand showed a total retention of pDNA using 1.3 M ammonium sulfate in eluent buffer. A selective separation of supercoiled and open circular isoforms was achieved by further decreasing the salt concentration to 0.6 M and then to 0 M. These results suggest a promising application of berenil as ligand for specific purification of pDNA supercoiled isoform by pseudo-affinity chromatography.  相似文献   

9.
Abstract

The DNA binding of BMS 181176, an antitumor antibiotic derivative of rebeccamycin was characterized by DNA unwinding assays, as well as by fluorescence emission and polarization spectroscopic techniques. Unwinding and rewinding of supercoiled DNA was interpreted in terms of intercalation of BMS 181176 into DNA BMS 181176 shows an enhanced fluorescence emission upon binding to the AT sequence and no enhancement upon binding to the GC sequence. BMS 181176 appears to be a weaker binder to poly(dAdT).poly(dAdT) compared to doxorubicin and ethidium bromide. When bound to DNA, the rotational motion of BMS 181176 is substantially decreased as evident from the increase in fluorescence polarization. BMS 181176 exhibits a range of binding strengths depending on the DNA This is demonstrated by the Acridine Orange displacement assay using fluorescence polarization.  相似文献   

10.
The displacement of methyl green, a dye bound ionically to double stranded DNA, has been suggested as a potential assay for drug-DNA interaction. The present investigation studies the equilibrium system of methyl green, its colorless carbinol form and DNA in the presence of salt (MgSO4), ethidium bromide, and quinine. The reversibility of the equilibrium, and the absence of sequestered sites or two modes of binding for methyl green are demonstrated.  相似文献   

11.
The influence of mica surface on DNA/ethidium bromide interactions is investigated by atomic force microscopy (AFM). We describe the diffusion mechanism of a DNA molecule on a mica surface by using a simple analytical model. It appears that the DNA diffusion on a mica surface is limited by the surface friction due to the counterion correlations between the divalent counterions condensed on both mica and DNA surfaces. We also study the structural changes of linear DNA adsorbed on mica upon ethidium bromide binding by AFM. It turns out that linear DNA molecules adsorbed on a mica surface are unable to relieve the topological constraint upon ethidium bromide binding. In particular, strongly adsorbed molecules tend to be highly entangled, while loosely bound DNA molecules appear more extended with very few crossovers. Adsorbed DNA molecules cannot move freely on the surface because of the surface friction. Therefore, the topological constraint increases due to the ethidium bromide binding. Moreover, we show that ethidium bromide has a lower affinity for strongly bound molecules due to the topological constraint induced by the surface friction.  相似文献   

12.
We have developed a new helicase assay that overcomes many limitations of other assays used to measure this activity. This continuous, kinetic assay is based on the displacement of fluorescent dyes from dsDNA upon DNA unwinding. These ligands exhibit significant fluorescence enhancement when bound to duplex nucleic acids and serve as the reporter molecules of DNA unwinding. We evaluated the potential of several dyes [acridine orange, ethidium bromide, ethidium homodimer, bis-benzimide (DAPI), Hoechst 33258 and thiazole orange] to function as suitable reporter molecules and demonstrate that the latter three dyes can be used to monitor the helicase activity of Escherichia coli RecBCD enzyme. Both the binding stoichiometry of RecBCD enzyme for the ends of duplex DNA and the apparent rate of unwinding are not significantly perturbed by two of these dyes. The effects of temperature and salt concentration on the rate of unwinding were also examined. We propose that this dye displacement assay can be readily adapted for use with other DNA helicases, with RNA helicases, and with other enzymes that act on nucleic acids.  相似文献   

13.
The sequence selectivity associated with binding to DNA of three alkaloids belonging to the benzophenanthridine family has been analysed by DNase I footprinting, and the results were compared with those obtained from an analysis of the behaviour of the standard intercalator, ethidium bromide. Like the ethidium, the benzophenanthridine compounds appear to bind best to regions of mixed nucleotide sequence, especially those containing alternating purines and pyrimidines, although there are some notable differences in behaviour. There is also a marked lack of binding to sequences such as (AT)n, where n greater than or equal to 3. The binding to DNA of the benzophenanthridines is specifically related to the hydrogen ion concentration of the medium, in that the DNase I footprints are considerably enhanced when the reaction is performed at a pH below 7.0. We discuss these results in terms of a greater preponderance of the intercalating species being present at lower pH.  相似文献   

14.
15.
We have observed a number of discrepancies and contradictions in the use of a fluorescent intercalator displacement assay in surveying the binding affinities of dinuclear polypyridyl ruthenium(II) complexes with DNA. By a modification of the assay using the fluorescent minor-groove binder 4′,6-diamidino-2-phenylindole, rather than intercalating dyes (ethidium bromide or thiazole orange), results were obtained for all complexes studied which were consistent with relative affinities and stereoselectivities observed with other techniques, including NMR, affinity chromatography and equilibrium dialysis. It is believed that the difference in binding mode between the minor groove-binding Ru(II) complexes and the intercalating fluorescent dyes they are displacing may contribute to these discrepancies. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Lipopolyamines, with high affinity for calf thymus DNA in an ethidium bromide displacement assay, bind with high affinity to bacterial lipopolysaccharide and neutralise in vitro endotoxic activity as determined by Griess nitric oxide and TNF-alpha ELISA assays.  相似文献   

17.
The complex between lac repressor headpiece and short rodlike DNA fragments containing the lac operator sequence is characterised by measurements of the rotation diffusion. Using the method of electric dichroism we measure the rotation relaxation and determine changes in the length of the DNA upon ligand binding with high accuracy. According to these measurements any change in the length of the operator DNA upon binding of the first two headpiece molecules remains below 1A; the electric dichroism also remains virtually unchanged. At high degrees of (unspecific) binding we observe an increase in the rotation relaxation time, which is attributed to an increase of the apparent mean radius of the complex. As a control of our procedure for the determination of length changes we use the intercalation of ethidium bromide and arrive at an increase of the DNA length per bound ethidium of 3.2A (at 3.4A rise per base pair). The results obtained for the headpiece operator complex are not consistent with models assuming large changes of the DNA structure or intercalation of tyrosine residues.  相似文献   

18.
Many proteins involved in DNA repair systems interact with DNA that has structure altered from the typical B-form helix. Using magnetic beads to immobilize DNAs containing various types of structures, we evaluated the in vitro binding activities of two well-characterized DNA repair proteins, Escherichia coli MutS and human p53. E. coli MutS bound to double-stranded DNAs, with higher affinity for a G/T mismatch compared to a G/A mismatch and highest affinity for larger non-B-DNA structures. E. coli MutS bound best to DNA between pH 6 and 9. Experiments discriminated between modes of p53–DNA binding, and increasing ionic strength reduced p53 binding to nonspecific double-stranded DNA, but had minor effects on binding to consensus response sequences or single-stranded DNA. Compared to nonspecific DNA sequences, p53 bound with a higher affinity to mismatches and base insertions, while binding to various hairpin structures was similar to that observed to its consensus DNA sequence. For hairpins containing CTG repeats, the extent of p53 binding was proportional to the size of the repeat. In summary, using the flexibility of the magnetic bead separation assay we demonstrate that pH and ionic strength influence the binding of two DNA repair proteins to a variety of DNA structures.  相似文献   

19.
DNA sequence recognition by bispyrazinonaphthalimides antitumor agents   总被引:4,自引:0,他引:4  
Bifunctional DNA intercalating agents have long attracted considerable attention as anticancer agents. One of the lead compounds in this category is the dimeric antitumor drug elinafide, composed of two tricyclic naphthalimide chromophores separated by an aminoalkyl linker chain optimally designed to permit bisintercalation of the drug into DNA. In an effort to optimize the DNA recognition capacity, different series of elinafide analogues have been prepared by extending the surface of the planar drug chromophore which is important for DNA sequence recognition. We report here a detailed investigation of the DNA sequence preference of three tetracyclic monomeric or dimeric pyrazinonaphthalimide derivatives. Melting temperature measurements and surface plasmon resonance (SPR) studies indicate that the dimerization of the tetracyclic planar chromophore considerably augments the affinity of the drug for DNA, polynucleotides, or hairpin oligonucleotides and promotes selective interaction with G.C sites. The (CH(2))(2)NH(CH(2))(3)NH(CH(2))(2) connector stabilizes the drug-DNA complexes. The methylation of the two nitrogen atoms of this linker chain reduces the binding affinity and increases the dissociation rates of the drug-DNA complexes by a factor of 10. DNase I footprinting experiments were used to investigate the sequence selectivity of the drugs, demonstrating highly preferential binding to G.C-rich sequences. It also served to select a high-affinity site encompassing the sequence 5'-GACGGCCAG which was then introduced into a biotin-labeled hairpin oligonucleotide to accurately measure the binding parameters by SPR. The affinity constant of the unmethylated dimer for this sequence is 500 times higher than that of the monomer compound and approximately 10 times higher than that of the methylated dimer. The DNA groove accessibility was also probed with three related oligonucleotides carrying G --> c(7)G, G --> I, and C --> M substitutions. The level of drug binding to the two hairpin oligonucleotides containing 7-deazaguanine (c(7)G) or 5-methylcytosine (M) residues is unchanged or only slightly reduced compared to that of the unmodified target. In contrast, incorporation of inosine (I) residues considerably decreases the extent of drug binding or even abolishes the interaction as is the case with the monomer. The pyrazinonaphthalimide derivatives are thus much more sensitive to the deletion of the exocyclic guanine 2-amino group exposed in the minor groove of the duplex than to the modification of the major groove elements. The complementary SPR footprinting methodology combining site selection and quantitative DNA affinity analysis constitutes a reliable method for dissecting the DNA sequence selectivity profile of reversible DNA binding small molecules.  相似文献   

20.
An ethidium homodimer and acridine ethidium heterodimer have been synthesized (Gaugain, B., Barbet, J., Oberlin, R., Roques, B. P., & Le Pecq, J. B. (1978) Biochemistry 17 (preceding paper in this issue)). The binding of these molecules to DNA has been studied. We show that these dimers intercalate only one of their chromophores in DNA. At high salt concentration (Na+ greater than 1 M) only a single type of DNA-binding site exists. Binding affinity constants can then be measured directly using the Mc Ghee & Von Hippel treatment (Mc Ghee, J. D., & Von Hippel, P. H. (1974) J. Mol. Biol. 86, 469). In these conditions the dimers cover four base pairs when bound to DNA. Binding affinities have been deduced from competition experiments in 0.2 M Na+ and are in agreement with the extrapolated values determined from direct DNA-binding measurements at high ionic strength. As expected, the intrinsic binding constant of these dimers is considerably larger than the affinity of the monomer (ethidium dimer K = 2 X 10(8) M-1; ethidium bromide K = 1.5 X 10(5) M-1 in 0.2 M Na+). The fluorescence properties of these molecules have also been studied. The efficiency of the energy transfer from the acridine to the phenanthridinium chromophore, in the acridine ethidium heterodimer when bound to DNA, depends on the square of the AT base pair content. The large increase of fluorescence on binding to DNA combined with a high affinity constant for nucleic acid fluorescent probes. In particular, such molecules can be used in competition experiments to determine the DNA binding constant of ligands of high binding affinity such as bifunctional intercalators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号