首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In several insects and fish, and probably some mammals, the gene controlling the male-female switch has changed during evolution. It now seems that this has also happened in honeybees, where the sex-determining gene has now been shown to be a duplicate of another Hymenopteran sex-determining gene.  相似文献   

3.
The genetics and biology of vertebrate sex determination.   总被引:2,自引:0,他引:2  
P Koopman 《Cell》2001,105(7):843-847
  相似文献   

4.
The nematodes Caenorhabditis elegans and C. briggsae independently evolved self-fertile hermaphroditism from gonochoristic ancestors. C. briggsae has variably divergent orthologs of nearly all genes in the C. elegans sex determination pathway. Their functional characterization has generally relied on reverse genetic approaches, such as RNA interference and cross-species transgene rescue and more recently on deletion mutations. We have taken an unbiased forward mutagenesis approach to isolating zygotic mutations that masculinize all tissues of C. briggsae hermaphrodites. The screens identified loss-of-function mutations in the C. briggsae orthologs of tra-1, tra-2, and tra-3. The somatic and germline phenotypes of these mutations are largely identical to those of their C. elegans homologs, including the poorly understood germline feminization of tra-1(lf) males. This overall conservation of Cb-tra phenotypes is in contrast to the fem genes, with which they directly interact and which are significantly divergent in germline function. In addition, we show that in both C. briggsae and C. elegans large C-terminal truncations of TRA-1 that retain the DNA-binding domain affect sex determination more strongly than somatic gonad development. Beyond these immediate results, this collection of mutations provides an essential foundation for further comparative genetic analysis of the Caenorhabditis sex determination pathway.  相似文献   

5.
Biochemists and geneticists, represented by Doug and Bill in classic essays, have long debated the merits of their methods. We revisited this issue using genomic data from the budding yeast, Saccharomyces cerevisiae, and found that genetic interactions outperformed protein interactions in predicting functional relationships between genes. However, when combined, these interaction types yielded superior performance, convincing Doug and Bill to call a truce.  相似文献   

6.
7.
李萌  贺竹梅 《遗传》2014,36(6):611-617
有性生殖的出现是生物进化中的重大事件。性别作为生物的一种重要而又复杂的表型, 由基因和环境因素共同控制, 其中遗传因素即基因起到非常关键的作用。 然而, 并不是每个相关基因对于生物的性别都具有相同的作用, 性别决定关键基因对生物性别的决定和性别的分化具有重要作用, 因而研究和理解性别决定的关键基因具有重要意义。随着现代遗传学的发展, 目前关于生物性别决定方式以及性别决定关键基因的研究已取得了很大的进展。文章就生物的基因性别决定机制以及基因性别决定机制的研究策略进行了综述, 以期在遗传学教学中能更好地理解和阐述。  相似文献   

8.
While it has been long appreciated that sugar-modified proteins coat the cell surface, their functions are poorly understood. Here, I describe recent genetic studies that demonstrate that one class of sugar-modified proteins, cell-surface proteoglycans, play crucial roles in morphogenesis, growth regulation and tumor suppression. Mutations that affect individual proteoglycans or the enzymes required for glycosaminoglycan synthesis regulate Wingless and Decapentaplegic signaling in Drosophila, and body size in mice and humans. Compromising proteoglycan function is also associated with the development of Wilm's tumors and hereditary multiple exostoses. In this review, these biological findings are placed in the context of proteoglycan biochemistry and molecular function.  相似文献   

9.
10.
11.
Modrfication of proteins at C-terminal cysteine residue(s) by the isoprenoids farnesyl (C15) and geranylgeranyl (C20) is essential for the biological function of a number of eukaryotic proteins including fungal mating factors and the small, GTP-binding proteins of the Ras superfamily. Three distinct enzymes, conserved between yeast and mammals, have been identified that prenylate proteins: farnesyl protein transferase, geranylgeranyl protein transferase type I and geranylgeranyl protein transferase type II. Each prenyl protein transferase has its own protein substrate specificity. Much has been learned about the biology, genetics and biochemistry of protein prenylation and prenyl protein transferases through studies of eukaryotic microorganisms, particularly Saccharo-myces cerevisiae. The functional Importance of protein prenylation was first demonstrated with fungal mating factors. The initial genetic analysis of prenyl protein transferases was in S. cerewisiae with the isolation and subsequent characterization of mutations in the RAM1, RAM2, CDC43 and BET2 genes, each of which encodes a prenyl protein transferase subunit. We review here these and other studies on protein prenylation in eukaryotic microbes and how they relate to and have contributed to our knowledge about protein prenylation in all eukaryotic cells.  相似文献   

12.
13.
This paper reviews the combined genetical, electrophysiological and biochemical analysis of excitation that has been carried out in Paramecium. Paramecium cells display graded Ca++ action potentials in response to a variety of stimuli. These action potentials regulate the orientation of the ciliary beat hence the cell's swimming behaviour. A large array of mutants displaying altered behaviour have been isolated and mapped to over 20 loci. Detailed electrophysiological analyses have been carried out on several classes of mutants revealing defects in specific ion channels in some cases. Mutants have proven very useful to analyze channel properties, to unravel interactions between channels and to discover the function of these channels in a variety of cellular processes. Some important channels are located in the ciliary membranes and cilia as well as ciliary membranes can now be purified in high purity and reasonable yield. These fractions have been used recently in a variety of biochemical approaches to gain insight into the molecular components of the excitation machinery. Specific alterations in some minor membrane proteins have been found in two mutants as well as a specific defect in sphingolipids in a third mutant. Those alterations had to be distinguished from large scale variations in membrane proteins and lipids that occur in this organism in response to modifications in growth conditions. Several other recent biochemical developments are reviewed and the advantages as well as the difficulties of the genetic approach to the molecular study of biological processes are discussed.  相似文献   

14.
This review is a survey of bacterial dehalogenases that catalyze the cleavage of halogen substituents from haloaromatics, haloalkanes, haloalcohols, and haloalkanoic acids. Concerning the enzymatic cleavage of the carbon-halogen bond, seven mechanisms of dehalogenation are known, namely, reductive, oxygenolytic, hydrolytic, and thiolytic dehalogenation; intramolecular nucleophilic displacement; dehydrohalogenation; and hydration. Spontaneous dehalogenation reactions may occur as a result of chemical decomposition of unstable primary products of an unassociated enzyme reaction, and fortuitous dehalogenation can result from the action of broad-specificity enzymes converting halogenated analogs of their natural substrate. Reductive dehalogenation either is catalyzed by a specific dehalogenase or may be mediated by free or enzyme-bound transition metal cofactors (porphyrins, corrins). Desulfomonile tiedjei DCB-1 couples energy conservation to a reductive dechlorination reaction. The biochemistry and genetics of oxygenolytic and hydrolytic haloaromatic dehalogenases are discussed. Concerning the haloalkanes, oxygenases, glutathione S-transferases, halidohydrolases, and dehydrohalogenases are involved in the dehalogenation of different haloalkane compounds. The epoxide-forming halohydrin hydrogen halide lyases form a distinct class of dehalogenases. The dehalogenation of alpha-halosubstituted alkanoic acids is catalyzed by halidohydrolases, which, according to their substrate and inhibitor specificity and mode of product formation, are placed into distinct mechanistic groups. beta-Halosubstituted alkanoic acids are dehalogenated by halidohydrolases acting on the coenzyme A ester of the beta-haloalkanoic acid. Microbial systems offer a versatile potential for biotechnological applications. Because of their enantiomer selectivity, some dehalogenases are used as industrial biocatalysts for the synthesis of chiral compounds. The application of dehalogenases or bacterial strains in environmental protection technologies is discussed in detail.  相似文献   

15.
This paper provides a brief overview of the biochemistry, genetics andbiological activity of glucosinolates and their degradation products.These compounds are found in vegetative and reproductive tissues of16 plant families, but are most well known as the major secondarymetabolites in the Brassicaceae. Following tissue disruption, theyare hydrolysed to a variety of products of which isothiocyanates(`mustard oils') are the most prominent. The majority of geneticstudies have concentrated on reducing the levels of these compoundsin the seeds of oilseed Brassica crops due to antinutritionalfactors associated with 2-hydroxy-3-butenyl glucosinolate. However,current interest is concerned with the anticarcinogenic activity ofisothiocyanates derived from cruciferous vegetables and salad crops.  相似文献   

16.
Previous analyses of the Giardia genome exposed numerous genes required for meiosis, suggesting that sexual reproduction is occurring in this early-diverging eukaryote. A new study now uncovers direct genetic evidence for recombination in Giardia populations.  相似文献   

17.
An outline of the complex regulatory gene network that controls all aspects of sexual dimorphism in the nematode C. elegans is now known in considerable details. This review describes the genes and gene interactions involved in the coordinate control of sex determination and X chromosome dosage compensation in C. elegans.  相似文献   

18.
Microbial metabolism of furanic compounds, especially furfural and 5-hydroxymethylfurfural (HMF), is rapidly gaining interest in the scientific community. This interest can largely be attributed to the occurrence of toxic furanic aldehydes in lignocellulosic hydrolysates. However, these compounds are also widespread in nature and in human processed foods, and are produced in industry. Although several microorganisms are known to degrade furanic compounds, the variety of species is limited mostly to Gram-negative aerobic bacteria, with a few notable exceptions. Furanic aldehydes are highly toxic to microorganisms, which have evolved a wide variety of defense mechanisms, such as the oxidation and/or reduction to the furanic alcohol and acid forms. These oxidation/reduction reactions constitute the initial steps of the biological pathways for furfural and HMF degradation. Furfural degradation proceeds via 2-furoic acid, which is metabolized to the primary intermediate 2-oxoglutarate. HMF is converted, via 2,5-furandicarboxylic acid, into 2-furoic acid. The enzymes in these HMF/furfural degradation pathways are encoded by eight hmf genes, organized in two distinct clusters in Cupriavidus basilensis HMF14. The organization of the five genes of the furfural degradation cluster is highly conserved among microorganisms capable of degrading furfural, while the three genes constituting the initial HMF degradation route are organized in a highly diverse manner. The genetic and biochemical characterization of the microbial metabolism of furanic compounds holds great promises for industrial applications such as the biodetoxifcation of lignocellulosic hydrolysates and the production of value-added compounds such as 2,5-furandicarboxylic acid.  相似文献   

19.
Two complementing loci in different linkage groups of the basidiomycete Ustilago violacea are involved in urease activity: a structural one (ure-1) and a second inferred to involve a permease (ure-2) locus. Two types of complementing mutations occur in the structural locus: null activity (ure-1a) and obviously reduced activity (ure-1b). The ure-2 mutants lacked urease activity in vivo on the phenol red-urea test medium, but gave extracts with wild-type activity. Extracts from wild-type strains gave one site of urease activity after polyacrylamide gel electrophoresis. A number of ure-1b mutants and active revertants from ure-1a mutants yielded electrophoretically variant urease sites. The results are discussed in terms of enzyme polymorphism in haploid eukaryotes by one (missense) or two (null, then missense) mutations.  相似文献   

20.
Plant sex determination and sex chromosomes   总被引:15,自引:0,他引:15  
Charlesworth D 《Heredity》2002,88(2):94-101
Sex determination systems in plants have evolved many times from hermaphroditic ancestors (including monoecious plants with separate male and female flowers on the same individual), and sex chromosome systems have arisen several times in flowering plant evolution. Consistent with theoretical models for the evolutionary transition from hermaphroditism to monoecy, multiple sex determining genes are involved, including male-sterility and female-sterility factors. The requirement that recombination should be rare between these different loci is probably the chief reason for the genetic degeneration of Y chromosomes. Theories for Y chromosome degeneration are reviewed in the light of recent results from genes on plant sex chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号