首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
Brassica rapa L. (rapid-cycling Brassica), was grown in environmentally controlled chambers to determine the interactive effects of ozone (O3) and increased root temperature (RT) on biomass, reproductive output, and photosynthesis. Plants were grown with or without an average treatment of 63 ppb O3. RT treatments were 13°C (LRT) and 18°C (HRT). Air temperatures were 25°C/15°C day/night for all RT treatments.
Ozone affected plant biomass more than did root temperature. Plants in O3 had significantly smaller total plant d. wt, shoot weight, leaf weight, leaf area and leaf number than plants grown without O3. LRT plants tended to have slightly smaller total plant d. wt, shoot weight, root weight, leaf weight, leaf area, and leaf number than HRT plants. For all variables, LRT plants grown in O3 had the smallest biomass, and plants grown in HRT without O3 had the largest biomass.
Ozone reduced both fruit weight and fruit number; LRT also reduced fruit weight but had no effect on fruit number. Ozone reduced photosynthesis but RT had no effect. Conductance and internal CO2 were unaffected by O3 or RT.
These studies indicate that plant growth with LRT might be more reduced in the presence of O3 than growth in plants with HRT, which might be able to compensate for O3-caused reductions in photosynthesis to avoid decreased biomass and reproductive output.  相似文献   

2.
The long-term response of Arabidopsis thaliana to increasing CO2 was evaluated in plants grown in 800 μl l−1 CO2 from sowing and maintained, in hydroponics, on three nitrogen supplies: "low,""medium" and "high." The global response to high CO2 and N-supply was evaluated by measuring growth parameters in parallel with photosynthetic activity, leaf carbohydrates, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) messenger RNA and protein, stomatal conductance (gs) and density. CO2 enrichment was found to stimulate biomass production, whatever the N-supply. This stimulation was transient on low N-supply and persisted throughout the whole vegetative growth only in high N-supply. Acclimation on low N–high CO2 was not associated with carbohydrate accumulation or with a strong reduction in Rubisco amount or activity. At high N-supply, growth stimulation by high CO2 was mainly because of the acceleration of leaf production and expansion while other parameters such as specific leaf area, root/shoot ratio and gs appeared to be correlated with total leaf area. Our results thus suggest that, in strictly controlled and stable growing conditions, acclimation of A. thaliana to long-term CO2 enrichment is mostly controlled by growth rate adjustment.  相似文献   

3.
Leaf water potentials below threshold values result in reduced stomatal conductance (gs). Stomatal closure at low leaf water potentials may serve to protect against cavitation of xylem. Possible control of gs by leaf water potential or hydraulic conductance was tested by drying the rooting medium in four herbaceous annual species until gs was reduced and then lowering the [CO2] to determine whether gs and transpiration rate could be increased and leaf water potential decreased and whether hydraulic conductance was reduced at the resulting lower leaf water potential. In all species, low [CO2] could reverse the stomatal closure because of drying despite further reductions in leaf water potential, and the resulting lower leaf water potentials did not result in reductions in hydraulic conductance. The relative sensitivity of gs to internal [CO2] in the leaves of dry plants of each species averaged three to four times higher than in leaves of wet plants. Two species in which gs was reputed to be insensitive to [CO2] were examined to determine whether high leaf to air water vapor pressure differences (D) resulted in increased stomatal sensitivity to [CO2]. In both species, stomatal sensitivity to [CO2] was indeed negligible at low D, but increased with D, and low [CO2] partly or fully reversed closure caused by high D. In no case did low leaf water potential or low hydraulic conductance during drying of the air or the rooting medium prevent low [CO2] from increasing gs and transpiration rate.  相似文献   

4.
Effects of source-sink relations on photosynthetic acclimation to elevated CO2   总被引:17,自引:11,他引:6  
Abstract. While photosynthesis of C3 plants is stimulated by an increase in the atmospheric CO2 concentration, photosynthetic capacity is often reduced after long-term exposure to elevated CO2. This reduction appears to be brought about by end product inhibition, resulting from an imbalance in the supply and demand of carbohydrates. A review of the literature revealed that the reduction of photosynthetic capacity in elevated CO2 was most pronounced when the increased supply of carbohydrates was combined with small sink size. The volume of pots in which plants were grown affected the sink size by restricting root growth. While plants grown in small pots had a reduced photosynthetic capacity, plants grown in the field showed no reduction or an increase in this capacity. Pot volume also determined the effect of elevated CO2 on the root/shoot ratio: the root/shoot ratio increased when root growth was not restricted and decreased in plants grown in small pots. The data presented in this paper suggest that plants growing in the field will maintain a high photosynthetic capacity as the atmospheric CO2 level continues to rise.  相似文献   

5.
Physiological responses of Agropyron desertorum and Pseudoroegneria spicata , two common cold desert perennial tussock grass species of the North American Great Basin, were evaluated during and after a period of imposed drought in a pot study. The timing and the pattern of response of leaf water potential (Ψ1), stomatal conductance (gs), and root growth were strikingly similar in both species during and after drought. The severity of stress influenced the magnitude of Ψ1 and gs, but had little effect on the timing of these responses. Although drought inhibited total root length in prestressed plants, within 4 days after relief of drought both species showed similar increases in root growth which exceeded those of the control. Despite similarities in their root growth responses to increased soil water availability, the two grasses differed in their capacity to restore N uptake following drought. By 14 days after rewatering, N uptake in the prestressed Agropyron had recovered to levels of control plants, although both root biomass and root lenght were much less than those of the controls. This is attributed to elevated root uptake kinetics. Restoration of N uptake by prestressed Pseudoregneria was much less effective during the same period.  相似文献   

6.
Pezeshki  S.R.  Santos  M.I. 《Photosynthetica》1998,35(3):381-390
Seedlings of baldcypress (Taxodium distichum L.) grown in sealed containers containing nutrient solution were subjected to root-zone oxygen deficiency, physical restriction, and the combined stresses in a greenhouse. After six weeks of treatments (Phase I), half of the plants were harvested. The remaining half were allowed to continue (Phase II) under various treatments except plants that had restricted roots were freed thus allowing free expansion of roots into the nutrient solution. Oxygen deficiency and root physical restriction inhibited plant gas exchange parameters. Net photosynthetic rate (PN) was significantly higher in aerated unrestricted root (AUR) plants than in aerated root restricted (AR) plants and in anaerobic root unrestricted (FUR) plants than in anaerobic root restricted (FR) plants. After Phase I, FUR plants' shoot and root biomasses were 57.0 and 30.6 % lower than those of AUR plants, and AUR plants showed 3.3 and 3.8 times greater shoot and root biomasses than the AR plants, respectively. During Phase II, PN recovered rapidly in plants under aerated conditions, but not in plants under anaerobic conditions. The removal of physical root restriction under both aerated and anaerobic conditions resulted in rapid shoot and root growth in seedlings. Hence, root restriction or root-zone anaerobiosis, reductions in plant gas exchange, and biomass production in baldcypress were closely interrelated. In addition, root release from restriction was related to the regain of photosynthetic activity and biomass growth. The results support the previously proposed source-sink feed-back inhibition of photosynthesis in plants subjected to root-zone oxygen deficiency or physical restriction.  相似文献   

7.
Gas exchange studies in two Portuguese grapevine cultivars   总被引:8,自引:0,他引:8  
Gas exchange characteristics of leaves of Vitis vinifera L. cvs Tinta Amarela and Periquita, two grapevine cultivars grown in distinct climatic regions of Portugal, were studied under natural and controlled conditions. Daily time courses of gas exchange were measured on both a hot, sunny day and a cooler, partly cloudy day. Responses of net photosynthesis to irradiance and internal partial pressure of CO2, were also obtained. A strong correlation between net photosynthesis (PN) and leaf conductance (gs) was found during the diurnal time courses of gas exchange, as well as a relatively constant internal partial pressure of CO2 (Pi), even under non-steady-state conditions. On the cloudless day, both PN and gs were lower in the afternoon than in the morning, despite similar conditions of leaf temperature, air to leaf water vapor deficit and irradiance. The response curves of net photosynthesis to internal CO2 showed linearity up to pi values of 50 Pa, possibly indicating a substantial excess of photosynthetic capacity. When measured at low partial pressures of O2 (1 kPa), PN became inhibited at high CO2 levels. Inhibition of PN at high CO2 was absent under normal levels of O2 (21 kPa). Significant differences in gas exchange characteristics were found between the two cultivars, with T. Amarela having higher rates under similar measurement conditions. In particular, the superior performance of T. Amarela at high temperatures may represent adaptation to the warmer conditions at its place of origin.  相似文献   

8.
The effect of fruiting on carbon fixation and retention in leaves was monitored by measuring net photosynthesis (Pn) and total non-structural carbohydrates (TNC) on a seasonal basis on mature fruiting and non-fruiting sweet cherry trees ( Prunus avium L. cv. Bing). Pn was also measured diurnally during stages II and III of fruit development. Pn rates increased to between 18 and 20 mg CO2 dm-2 h-1 during stage II of fruit development and were maintained until harvest. Diurnally, Pn increased in the morning to 20 mg CO2 dm-2 h-1 and this rate continued until sunset. Leaf carbohydrate levels decreased in both fruiting and non-fruiting trees beginning at the equivalent of stage II of fruit growth. Carbohydrates were lower in leaves and woody portions of current, 1- and 2-year-old shoots of fruiting trees. Although differences were found in levels of non-structural carbohydrates, no differences in Pn were found in fruiting vs non-fruiting plants on either a seasonal or a diurnal basis. Pn rates in swet cherry in the field were primarily affected by ontogeny and environment and not by sink strength.  相似文献   

9.
When rooted cuttings of Corylus maxima Mill. cv. Purpurea are moved from the wet and humid conditions of the rooting environment, the leaves frequently shrivel and die. Since the newly formed adventitious root system has been shown to be functional in supplying water to the shoot, stomatal behaviour in C. maxima was investigated in relation to the failure to prevent desiccation. Stomatal conductance (gs) in expanding leaves (L3) of cuttings increased almost 10-fold over the first 14 days in the rooting environment (fog), from 70 to 650 mmol m−2 s−1. In contrast, gs of expanded leaves (L1) changed little and was in the region of 300 mmol m−2 s−1. Midday leaf water potential was much higher in cuttings than in leaves on the mother stock-plant (−0.5 versus −1.2 MPa) even before any roots were visible. Despite this, leaf expansion of L3 was inhibited by >50% in cuttings and stomata showed a gradual reduction in their ability to close in response to abscisic acid (ABA). To determine whether the loss of stomatal function in cuttings was due to severance or to unnaturally low vapour pressure deficit and wetting in fog, intact plants were placed alongside cuttings in the rooting environment. The intact plants displayed reductions in leaf expansion and in the ability of stomata to close in response to dark, desiccation and ABA. However, in cuttings, the additional effect of severance resulted in smaller leaves than in intact plants and more severe reduction in stomatal closure, which was associated with a 2.5-fold increase in stomatal density and distinctively rounded stomatal pores. The similarities between stomatal dysfunction in C. maxima and that observed in many species propagated in vitro are discussed, as is the possible mechanism of dysfunction.  相似文献   

10.
Changes in anatomical organisation of the leaf, photosynthetic performance and wood formation were examined to evaluate the temporal and spatial patterns of acclimatisation of micropropagated slow-growing black mulberry ( Morus nigra L.) plantlets to the ex vitro environment. Leaf structure differentiation, the rates of net photosynthesis (Pn), transpiration (E) and stomatal conductance (gs), and secondary xylem growth were determined in the course of a 56-day acclimatisation. Differentiation of palisade parenchyma was observed 7 days after transfer. At this stage, the rates of Pn, E and gs reached maximum values, after which the rates of all three gas exchange parameters gradually decreased. The highest proportion of woody area occupied by vessels was also observed 7 days after transfer. An important feature of developing woody tissue is the difference in patterns of vessel distribution from the characteristic differentiation patterns of earlywood and latewood vessels in mature wood of ring-porous trees. Vessels with lumen areas over 3000 μm2 were only differentiated in acclimatised plantlets, whereas vessels in stems sampled on days 0 and 7 had very small lumen areas of up to 560 μm2. Full acclimatisation, observed 56 days after transfer to the ex vitro environment, was associated with the rapid growth of new in vivo formed leaves, very low rates of E and gs, and much increased secondary xylem tissue within the stem area.  相似文献   

11.
Abstract: Diurnal courses of gas exchange were measured throughout one year in fully expanded current-year leaves in the uppermost canopy (sun leaves, 18 m above ground) and in the lower canopy (shade leaves, 12 m above ground) of Myrica faya Ait., a dominant component of the Canarian laurel forest in Tenerife, Canary Islands, Spain.
M. faya showed large differences between sun and shade leaves in gas exchange characteristics (about 50 % of maximum carbon assimilation rate (Amax) reduction in shade leaves, but this reduction can be higher on specific days) that were modulated by strong light attenuation and high leaf area index (LAI) of the stand. This species presented low Amax, about 10 μmol m-2 s-1, high maximum transpiration (E, 8 mmol m-2 s-1) and stomatal conductance (gs, 750 mmol m-2 s-1) and very low instantaneous water use efficiency (WUE, mean maximum 1.1 mmol mol-1) and A/gs (mean maximum 23.5 μmol mol-1). M. faya responded to high air vapour pressure deficit (VPD), decreasing its gs but maintaining relatively high values of A and E during the studied period. Stomatal response to VPD showed a higher sensitivity than its congeners, M. cerifera, and Laurus azorica, tree species co-occurring in the Canarian laurel forest. In general, all these gas exchange characteristics lead us to consider this species more similar to subtropical plants of humid regions than to species of the Mediterranean region.  相似文献   

12.
Eragrostis pilosa (Linn.) P Beauv., a C4 grass native to east Africa, was grown at both ambient (350 μmol mol−1 and elevated (700 μmol mol−1) CO2 in either the presence or absence of the obligate, root hemi-parasite Striga hermonthica (Del.) Benth. Biomass of infected grasses was only 50% that of uninfected grasses at both CO2 concentrations, with stems and reproductive tissues of infected plants being most severely affected. By contrast, CO2 concentration had no effect on growth of E. pilosa , although rates of photosynthesis were enhanced by 30–40% at elevated CO2. Infection with S. hermonthica did not affect either rates of photosynthesis or leaf areas of E. pilosa , but did bring about an increase in root:shoot ratio, leaf nitrogen and phosphorus concentration and a decline in leaf starch concentration at both ambient and elevated CO2. Striga hermonthica had higher rates of photosynthesis and shoot concentrations of soluble sugars at elevated CO2, but there was no difference in biomass relative to ambient grown plants. Both infection and growth at elevated CO2 resulted in an increase in the Δ13C value of leaf tissue of E. pilosa , with the CO2 effect being greater. The proportion of host-derived carbon in parasite tissue, as determined from δ13C values, was 27% and 39% in ambient and elevated CO2 grown plants, respectively. In conclusion, infection with S. hermonthica limited growth of E. pilosa , and this limitation was not removed or alleviated by growing the association at elevated CO2.  相似文献   

13.
Elevated CO2 appears to be a significant factor in global warming, which will likely lead to drought conditions in many areas. Few studies have considered the interactive effects of higher CO2, temperature and drought on plant growth and physiology. We grew canola ( Brassica napus cv. 45H72) plants under lower (22/18°C) and higher (28/24°C) temperature regimes in controlled-environment chambers at ambient (370 μmol mol−1) and elevated (740 μmol mol−1) CO2 levels. One half of the plants were watered to field capacity and the other half at wilting point. In three separate experiments, we determined growth, various physiological parameters and content of abscisic acid (ABA), indole-3-acetic acid and ethylene. Drought-stressed plants grown under higher temperature at ambient CO2 had decreased stem height and diameter, leaf number and area, dry matter, leaf area ratio, shoot/root weight ratio, net CO2 assimilation and chlorophyll fluorescence. However, these plants had increased specific leaf weight, leaf weight ratio and chlorophyll concentration. Elevated CO2 generally had the opposite effect, and partially reversed the inhibitory effects of higher temperature and drought on leaf dry weight accumulation. This study showed that higher temperature and drought inhibit many processes but elevated CO2 partially mitigate some adverse effects. As expected, drought stress increased ABA but higher temperature inhibited the ability of plants to produce ABA in response to drought.  相似文献   

14.
15.
Regulated irrigation has the potential to improve crop quality in woody ornamentals by reducing excessive vigour and promoting a more compact habit. This research aimed to compare the effectiveness and the mode of action of two techniques, regulated deficit irrigation (RDI) and partial root drying (PRD), when applied to container-grown ornamentals through drip irrigation. Results showed that RDI and PRD reduced growth in Cotinus coggygria 'Royal Purple', but in Forsythia x intermedia 'Lynwood', significant reductions were recorded only with RDI. Physiological measurements in Forsythia indicated that reductions in stomatal conductance (gs) occurred in both treatments, but those in the RDI tended to be more persistent. Reduced gs in PRD was consistent with the concept that chemical signals from the root can regulate stomatal aperture alone; however, the data also suggested that optimising the growth reduction required a moderate degree of shoot water deficit (i.e. a hydraulic signal to be imposed). As RDI was associated with tissue water deficit, it was used in a second experiment to determine the potential of this technique to precondition container-grown plants against subsequent drought stress (e.g. during retail stages or after planting out). Speed of acclimation would be important in a commercial context, and the results demonstrated that both slow and rapid imposition of RDI enabled Forsythia plants to acclimate against later drought events. This article discusses the potential to both improve ornamental plant quality and enhance tolerance to subsequent adverse conditions through controlled, regulated irrigation.  相似文献   

16.
In order to investigate effects of limited NO3 availability in corn ( Zea mays L. cv. Brulouis) 17-day-old plants were grown for a further 25 days on sand in a growth chamber. The plants received frequent irrigation with a complete nutrient solution containing 0.2, 0.6, 1.5 or 3.0 mM NO3. With 0.2 mM NO; nitrate levels in both roots and leaves diminished rapidly and were almost zero after 10 days treatment. Concurrently, as signs of nitrogen deficiency appeared, shoot growth was restricted, whereas root growth was enhanced. In addition, the concentration of reduced nitrogen and malate in the leaves declined, and in vitro nitrate reductase activity (NRA. EC 1.6.6.1), soluble protein and chlorophyll levels of leaf tissue were depressed and starch concentration was enhanced. With 0.6 mM NO3 in the nutrient solution, the decrease in NO3 levels in the tissues and the increase in root development were similar to those observed with 0.2 mM NO3. However, shoot growth, reduced nitrogen concentration in leaves, and the above-mentioned biochemical characteristics were almost identical to those obtained at 1.5 and 3.0 mM NO3. This indicates that when supplied with 0.6 mM NO3, corn plants were able to absorb sufficient NO3 to support maximal biomass production without appreciable NO3 accumulation in roots or shoot. It is, thus, suggested that the plants responded to low NO3, availability in medium by enhancing root growth and by maximizing NO3 reduction relative to NO3 accumulation.  相似文献   

17.
1. We tested the hypothesis that the net partitioning of dry mass and dry mass:area relationships is unaltered when plants are grown at elevated atmospheric CO2 concentrations.
2. The total dry mass of Dactylis glomerata, Bellis perennis and Trifolium repens was higher for plants in 700 compared to 350 μmol CO2 mol–1 when grown hydroponically in controlled-environment cabinets.
3. Shoot:root ratios were higher and leaf area ratios and specific leaf areas lower in all species grown at elevated CO2. Leaf mass ratio was higher in plants of B. perennis and D. glomerata grown at elevated CO2.
4. Whilst these data suggest that CO2 alters the net partitioning of dry mass and dry mass:leaf area relationships, allometric comparisons of the components of dry mass and leaf area suggest at most a small effect of CO2. CO2 changed only two of a total of 12 allometric coefficients we calculated for the three species: ν relating shoot to root dry mass was higher in D. glomerata , whilst ν relating leaf area to total dry mass was lower in T. repens .
5. CO2 alone has very little effect on partitioning when the size of the plant is taken into account.  相似文献   

18.
Root restriction may be of importance for productivity in both forestry and agriculture. To study the physiological effects of root restriction in European alder ( Alnus glutinosa Gaertn.), seedlings were grown in aerated liquid culture under one of four root volumes to induce the following levels of root restriction: 1.5, 6,16 and 500 ml. Root restriction for 96 days reduced shoot elongation, plant dry weight, leaf area and chlorophyll levels and increased leaf area/root dry weight ratio and correlative bud inhibition in seedlings. The initial reduction in root/shoot ratios of severely restricted seedlings was followed by a reduction in leaf water potential, the development of internal water deficits in the upper shoots, a reduction in stomatal opening and transpiration rates and, eventually, stomatal closure. Severe prolonged root restriction (1.5 ml root volume) resulted in a decline in seedling vigour and ultimately, senescence as determined by increased electrical impedance ratios, followed by visible leaf senescence and later, by whole plant senescence. Of the severely restricted seedlings, 40% were dead after 96 days of restriction. The results suggest that imbalanced root/shoot ratios caused the development of internal water stress and the consequent reduction in stomatal aperture, culminating in leaf and whole plant senescence.  相似文献   

19.
1. We report changes in photosynthetic capacity of leaves developed in varying photon flux density (PFD), nitrogen supply and CO2 concentration. We determined the relative effect of these environmental factors on photosynthetic capacity per unit leaf volume as well as the volume of tissue per unit leaf area. We calculated resource-use efficiencies from the photosynthetic capacities and measurements of leaf dry mass, carbohydrates and nitrogen content.
2. There were clear differences between the mechanisms of photosynthetic acclimation to PFD, nitrogen supply and CO2. PFD primarily affected volume of tissue per unit area whereas nitrogen supply primarily affected photosynthetic capacity per unit volume. CO2 concentration affected both of these parameters and interacted strongly with the PFD and nitrogen treatments.
3. Photosynthetic capacity per unit carbon invested in leaves increased in the low PFD, high nitrogen and low CO2 treatments. Photosynthetic capacity per unit nitrogen was significantly affected only by nitrogen supply.
4. The responses to low PFD and low nitrogen appear to function to increase the efficiency of utilization of the limiting resource. However, the responses to elevated CO2 in the high PFD and high nitrogen treatments suggest that high CO2 can result in a situation where growth is not limited by either carbon or nitrogen supply. Limitation of growth at elevated CO2 appears to result from internal plant factors that limit utilization of carbohydrates at sinks and/or transport of carbohydrates to sinks.  相似文献   

20.
Interactive effects of root restriction and atmospheric CO2 enrichment on plant growth, photosynthetic capacity, and carbohydrate partitioning were studied in cotton seedlings (Gossypium hirsutum L.) grown for 28 days in three atmospheric CO2 partial pressures (270, 350, and 650 microbars) and two pot sizes (0.38 and 1.75 liters). Some plants were transplanted from small pots into large pots after 20 days. Reduction of root biomass resulting from growth in small pots was accompanied by decreased shoot biomass and leaf area. When root growth was less restricted, plants exposed to higher CO2 partial pressures produced more shoot and root biomass than plants exposed to lower levels of CO2. In small pots, whole plant biomass and leaf area of plants grown in 270 and 350 microbars of CO2 were not significantly different. Plants grown in small pots in 650 microbars of CO2 produced greater total biomass than plants grown in 350 microbars, but the dry weight gain was found to be primarily an accumulation of leaf starch. Reduced photosynthetic capacity of plants grown at elevated levels of CO2 was clearly associated with inadequate rooting volume. Reductions in net photosynthesis were not associated with decreased stomatal conductance. Reduced carboxylation efficiency in response to CO2 enrichment occurred only when root growth was restricted suggesting that ribulose-1,5-bisphosphate carboxylase/oxygenase activity may be responsive to plant source-sink balance rather than to CO2 concentration as a single factor. When root-restricted plants were transplanted into large pots, carboxylation efficiency and ribulose-1,5-bisphosphate regeneration capacity increased indicating that acclimation of photosynthesis was reversible. Reductions in photosynthetic capacity as root growth was progressively restricted suggest sink-limited feedback inhibition as a possible mechanism for regulating net photosynthesis of plants grown in elevated CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号