首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Previously we showed that unlike normal, nude, or X-linked immune deficient (xid) mice, nude.xid mice are deficient in bone marrow pre-B cell targets for Abelson murine leukemia virus transformation. We show that nude.xid bone marrow is deficient in both CD45(B220)+ and CD45(B220)- surface (s)IgM- progenitors that give rise to B cell colonies in Whitlock-Witte cultures. CD45(B220)+ precursors had normal differentiation potential in vitro. CD45(B220)- precursors differentiated into CD45(B220)+ cells at the same rate as normal controls, but acquired sIgM at a much slower rate. These results correlated with the observation that in nude.xid mice the severity of B lineage defects correlates with maturity: a profound (ninefold) deficit of sIgM+, CD45(B220)+ mature B cells, a fivefold deficit in the sIgM-, CD45(B220)+ precursors of short term B cell colonies (colonies forming within 4-5 days in Whitlock-Witte cultures), and a moderate (twofold) decrease in the frequency of sIgM-, CD45(B220)- (less mature) precursors of long term B cell colonies (colonies forming after 14 days of Whitlock-Witte culture. Thus the combination of the nude and xid mutations produces a deficiency in early B cell progenitors and the deficiency becomes more profound with further maturation. Therefore the lack of mature B cells is the result of a cascade effect. Inasmuch as bone marrow progenitors are affected, and these are the source of the vast majority of B cells, most B cells are affected by the xid mutation and the xid defect cannot be attributed to a loss of a fetal lineage of B cells. These results suggest that xid affected cells lack the capacity to progress efficiently through differentiation in the absence of an exogenous factor(s) that is dependent on the product of a normal allele at the nude locus. This product might be supplied in vivo by a T cell or T cell-dependent source and/or epithelial elements such as bone marrow stromal cells all of which are known to be affected by the nude mutation.  相似文献   

3.
Epidermal cell fate and patterning in leaves.   总被引:18,自引:6,他引:12  
J C Larkin  M D Marks  J Nadeau    F Sack 《The Plant cell》1997,9(7):1109-1120
  相似文献   

4.
In this review, we describe the results of recent experiments designed to investigate various aspects of neural crest cell lineage and migration. We have analyzed the lineage of individual premigratory neural crest cells by injecting a fluorescent lineage tracer dye, lysinated fluorescein dextran, into cells within the dorsal neural tube. Individual clones contained cells that were located in very diverse sites consistent with their being sensory neurons, prepigment cells, Schwann cells, adrenergic cells, and neural tube cells. These results suggest that some neural crest cells in the trunk and cranial regions are multipotent prior to their emigration from the neural tube. The environment through which neural crest cells move influences both the pattern and direction of their migration. We have shown that the sclerotomal portion of the somites are responsible for the rostrocaudal pattern of trunk neural crest cell movement, whereas the neural tube appears to govern the dorsoventral position of neural crest-derived ganglia. In addition, the notochord inhibits the movement of neural crest cells. In order to understand necessary cell-matrix interactions in neural crest migration, we have performed perturbation experiments, in which antibodies directed against cell surface or extracellular matrix molecules were introduced along neural crest pathways. We find that integrins, fibronectin, laminin, and tenascin all play some role in cranial neural crest emigration. Thus, multiple factors may be involved in controlling neural crest cell migration, and different factors may be important for migration in different regions of the embryo.  相似文献   

5.
The identification of cell lineage for a given cell type of a particular tissue is an important step in understanding how this process contributes to histogenesis. The importance in understanding cell lineage has relevance for both theoretical and practical reasons. For example, delineating and identifying histogenic principals is required to advance stem cell research and tissue regeneration. To document cell lineage in a given experimental preparation, a number of techniques have been developed. This typically requires the injection of a tracer compound into a founder cell. As this cell produces progeny, the tracer is passed on to the daughter cells. By detecting the tracer in the progeny or daughter cells the investigator can determine which cells originated from the cell that was originally injected with the tracer. By using such an approach it is possible to trace the developmental path from the first cells of the embryo to the specialized cells making the tissue of the adult. A number of tracer compounds have been used with good results in lineage tracing. One of these tracer compounds is horseradish peroxidase (HRP). Several variations of the technique are available depending on what species are studied or what histological requirements are made by the study. A basic technique that can be adapted to individual needs is presented. Included in this protocol on lineage tracing are the procedures for injection, fixation, and the microscope evaluation of labelled cells in the Helobdella triseralis embryo. A brief discussion of the technique will note its advantages and disadvantages. Examples of labelled cell preparations are given to illustrate the technique.  相似文献   

6.
7.
As a milestone breakthrough of stem cell and regenerative medicine in recent years,somatic cell reprogramming has opened up new applications of regenerative medicine by breaking through the ethical shackles of embryonic stem cells.However,induced pluripotent stem(iPS) cells are prepared with a complicated protocol that results in a low reprogramming rate.To obtain differentiated target cells,iPS cells and embryonic stem cells still need to be induced using step-by-step procedures.The safety of induced target cells from iPS cells is currently a further concerning matter.More broadly conceived is lineage reprogramming that has been investigated since 1987.Adult stem cell plasticity,which triggered interest in stem cell research at the end of the last century,can also be included in the scope of lineage reprogramming.With the promotion of iPS cell research,lineage reprogramming is now considered as one of the most promising fields in regenerative medicine,will hopefully lead to customized,personalized therapeutic options for patients in the future.  相似文献   

8.
9.
A cell marking technique based on the structural differences existing between the interphase nucleus in two closely related species of birds, the chick and the Japanese quail, is described. In all embryonic and adult cell types of the quail, a large mass of heterochromatin is associated with the nucleolus making quail and chick cells easy to identify at the single cell level after application of any DNA-specific staining procedure and also at the electron microscope level. This method has been largely used to construct chimeras in ovo and to study dynamic processes such as cell migrations or cell lineage segregation during ontogeny. Recently monoclonal antibodies specific for either quail or chick antigenic determinants (for example, class II MHC antigens) have been prepared, increasing the interest of the quail-chick chimera system as an experimental model.  相似文献   

10.
11.
12.
Determination of the yeast cell lineage   总被引:2,自引:0,他引:2  
A J Klar 《Cell》1987,49(4):433-435
  相似文献   

13.
The Caenorhabditis elegans embryo undergoes a series of stereotyped cell cleavages that generates the organs and tissues necessary for an animal to survive. Here we review two models of embryonic patterning, one that is lineage-based, and one that focuses on domains of organ and tissue precursors. Our evolving view of C. elegans embryogenesis suggests that this animal develops by mechanisms that are qualitatively similar to those used by other animals.  相似文献   

14.
15.
16.
The formation of covalently linked, high molecular weight protein aggregates has been thought to play an important role in opacification of the human lens. Antisera were used in Western blot analysis to demonstrate the involvement of all major classes of lens proteins (alpha, beta and gamma crystallin; the major intrinsic membrane polypeptide) in covalent aggregation. Of these classes, aggregation of gamma and beta crystallins via intermolecular disulfide bonding and aggregation of the major intrinsic membrane polypeptide via intermolecular, non-disulfide bonding were more pronounced in cataractous as compared with normal lenses.  相似文献   

17.
Summary Pieces of coverslip glass coated with various proteins were implanted under one edge of a fresh skin wound on adult newt hind limbs so that the implant served as wound bed for the migrating wound epithelium. Laminin, a protein that has been implicated as an epithelial-specific adhesin, was a moderately good migration substrate. Type-IV collagen, fibrinogen and fibronectin, however, were significantly better. Fetuin, myoglobin, and casein all proved to be very poor substrates, allowing practically no migration. The inability of fetuin, myoglobin, and casein to support migration is further evidence that the considerable migration that occurs on collagen (Donaldson et al. 1982) fibrinogen and fibronectin (Donaldson and Mahan 1983) and the moderate migration on laminin, is a relatively specific response to these proteins and is therefore of special significance. The fact that laminin is a poorer migration substrate than collagen, fibrinogen or fibronectin suggests that the absence of cell surface laminin that has been associated with epithelial movement in several studies (Stanley et al. 1981; Clark et al. 1982; Madri and Stenn 1982; Gulati et al. 1983) may promote motility by allowing epithelial cells to interact directly with other extracellular macromolecules.  相似文献   

18.
The unc-86 gene product couples cell lineage and cell identity in C. elegans   总被引:22,自引:0,他引:22  
M Finney  G Ruvkun 《Cell》1990,63(5):895-905
The C. elegans gene unc-86 is required in several distinct neuroblast lineages for daughter cells to become different from their mothers, and is also required for the specification of particular neural identities. Consistent with the fact that unc-86 encodes a POU domain protein, we find that the unc-86 protein is localized to the nucleus. In the affected lineages, unc-86 protein appears within a few minutes after cell division in the nuclei of those daughter cells that are transformed by unc-86 mutations. Thus, expression of unc-86 protein is dependent on cell lineage. unc-86 protein is not asymmetrically segregated at further divisions. unc-86 protein also appears shortly after cell division in the nuclei of particular identified differentiating neurons; at least some of these neurons are nonfunctional in unc-86 mutants.  相似文献   

19.
Epidermal differentiation.   总被引:5,自引:0,他引:5  
  相似文献   

20.
The cell lineage tree of a multicellular organism represents its history of cell divisions from the very first cell, the zygote. A new method for high-resolution reconstruction of parts of such cell lineage trees was recently developed based on phylogenetic analysis of somatic mutations accumulated during normal development of an organism. In this study we apply this method in mice to reconstruct the lineage trees of distinct cell types. We address for the first time basic questions in developmental biology of higher organisms, namely what is the correlation between the lineage relation among cells and their (1) function, (2) physical proximity and (3) anatomical proximity. We analyzed B-cells, kidney-, mesenchymal- and hematopoietic-stem cells, as well as satellite cells, which are adult skeletal muscle stem cells isolated from their niche on the muscle fibers (myofibers) from various skeletal muscles. Our results demonstrate that all analyzed cell types are intermingled in the lineage tree, indicating that none of these cell types are single exclusive clones. We also show a significant correlation between the physical proximity of satellite cells within muscles and their lineage. Furthermore, we show that satellite cells obtained from a single myofiber are significantly clustered in the lineage tree, reflecting their common developmental origin. Lineage analysis based on somatic mutations enables performing high resolution reconstruction of lineage trees in mice and humans, which can provide fundamental insights to many aspects of their development and tissue maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号