首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motility of zooplankton: fitness, foraging and predation   总被引:1,自引:0,他引:1  
The relative fitness of planktonic organisms foraging underthe risk of predation is examined in terms of their swimmingspeed, path geometry and jump frequency. Fitness is quantifiedin terms of encounter and ingestion of prey, respiration andenergy cost associated with swimming and mortality due to encounterswith predators. It is shown that a convoluted swimming pathin the form of meanders, zigzags or spirals confers greaterfitness than swimming along a straight path. Optimal path configurationis such that the length-scale of the path-meanders is commensuratewith an organism's detection radius to prey, which in turn scaleswith the size of the organism. Optimal swimming speed for acruise-feeding organism decreases with increasing prey concentrationand increasing risk due to ambush predators. For ambush feedingon motile prey, a benefit is gained by periodically moving toa new location. The time spent swimming is largely a functionof energetic costs, whereas the time spent feeding is stronglycontrolled by prey concentration and the risk posed, in turn,by ambush predators. These predictions are supported by observationsdrawn from the literature.  相似文献   

2.
Early embryonic swimming is widespread among marine invertebrates, but quantitative information about swimming behaviors is scarce. Swimming may affect encounters with predators, positioning in the water column, and nutrient absorption. Measured rates and patterns of swimming and sinking for blastulae of four eastern Pacific echinoid species show that sinking speeds equal or exceed swimming speeds. Swimming speed scaled negatively with embryo size, though sinking speed did not scale with size. Analysis of swimming paths of Strongylocentrotus franciscanus revealed a temperature dependency in swimming pattern that affected speed of upward movement. Sinking speeds were significantly greater at 10 degrees C than at 14 degrees C for blastulae of all four species examined. In Dendraster excentricus, killing the blastulae annulled this temperature effect, indicating an active density regulation by these embryos. Finally, measurements of particle velocities around sinking and swimming D. excentricus blastulae show that swimming creates a more localized disturbance than sinking. Embryonic swimming may therefore decrease rather than increase encounters with pelagic predators. Results from subsequent experiments in which embryos were reared in low-oxygen environments suggest that any oxygen-absorption advantages of swimming have little, if any, effect on the development of D. excentricus embryos.  相似文献   

3.
Newly hatched pike laryae swim by lateral movements of the trunk. The swimming path is directed upwards. They do not avoid obstacles but interrupt any movements immediately when colliding a substrate. Paired cement glands in rostro-nasal position excrete an elastic connection between larva and the touched substrate. Larvae spend yolk sac stage in a motionless position. The glands were studied by scanning electron microscope, by lightmicroscope and transmission electron microscope. The organs consist of two rostro-lateral areas which have a striking sculptured surface. The glandular cells are of the high prismatic type with basic nuclei and granulae in the apical parts. The granulae are already reduced in size and number after hatching against the prehatching stage. This indicates an early secretory activity before an attachement occured. There are grounds to consider mainly two ecological aspects in favour of pike larvae attached to substrates. One is the distance from the bottom water layers which are often characterized by oxygen deficiency and low water currents. Because pike larvae develop their gills later the gas exchange occurs with the body surface. Favourable water circulation normally exists in some distance from sediment and improves the respiration. The second aspect is governed by immobility and pigmentation which camouflage larvae against predators.  相似文献   

4.
Thousands of flooded swimming pools were abandoned in New Orleans following Hurricane Katrina and provided a natural experiment to examine colonization of a novel aquatic habitat by mosquito larvae and their aquatic predators. We conducted a randomized survey of flooded swimming pools in two neighborhoods in January 2006 and found that 64% contained mosquito larvae, 92% contained predatory invertebrates, and 47% contained fishes. We collected 12,379 immature mosquitoes representing five species, primarily Culiseta inornata, and secondarily, the arboviral vector Culex quinquefasciatus. Dragonfly nymphs in the families Aeshnidae and Libellulidae were the most common predatory invertebrates collected among a total of 32 non-mosquito invertebrate species. Eleven species of fishes were collected, with Gambusia affinis accounting for 76% of the catch. Diversity of fishes in swimming pools was positively correlated with proximity to a levee breach and the fish assemblage found in swimming pools was similar to that found along shorelines of Lake Pontchartrain and drainage canals that flooded the study area. Mosquito larvae were rare or absent from pools containing fishes; however, path analysis indicated that the presence of top predators or abundant competitors may somewhat mitigate the effect of Gambusia affinis on mosquito presence.  相似文献   

5.
In many amphibian larvae a suite of morphological and behavioural characters varies together in an induced defence against predators, but it remains unclear which features are functionally related to defence. We independently manipulated behaviour and morphology in tadpoles of Hyla versicolor and assessed their consequences for swimming performance and predator escape. Data on burst swimming showed that tadpoles which accelerated rapidly were elongate, with shallow bodies and tails. Predator escape was measured by exposing tadpoles to predators (larval Anax dragonflies or larval Ambystoma salamanders) and recording time until death. Tadpoles were first reared for 30 days in ponds containing either caged Anax or no predators; individuals responded to predators by developing large brightly coloured tails and short bodies. We placed tadpoles of both morphological phenotypes into plastic tubs, and manipulated their behaviour using food and chemical cues from predators. Mortality risk experienced by the predator‐induced phenotype was about half that of the no‐predator phenotype, and risk increased with time spent swimming. An interaction between morphology and behaviour arose because increasing activity caused higher risk for tadpoles with deep tail fins but not shallow tail fins.  相似文献   

6.
Most planktonic larvae of marine invertebrates are denser than sea water, and rely on swimming to locate food, navigate advective currents, and avoid predators. Therefore, swimming behaviors play important roles in larval survival and dispersal. Larval bodies are often complex and highly variable across developmental stages and environmental conditions. These complex morphologies reflect compromises among multiple evolutionary pressures, including maintaining the ability to swim. Here, I highlight metrics of swimming performance, their relationships with morphology, and the roles of behavior in modulating larval swimming within biomechanical limits. Sand dollars have a representative larval morphology using long ciliated projections for swimming and feeding. Observed larval sand dollars fell within a narrow range of key morphological parameters that maximized their abilities to maintain directed upward movement over the most diverse flow fields, outperforming hypothetical alternatives in a numerical model. Ontogenetic changes in larval morphology also led to different vertical movements in simulated flow fields, implying stage-dependent vertical distributions and lateral transport. These model outcomes suggest a tight coupling between larval morphology and swimming. Environmental stressors, such as changes in temperature and pH, can therefore affect larval swimming through short-term behavioral adjustments and long-term changes in morphology. Larval sand dollars reared under elevated pCO(2) conditions had significantly different morphology, but not swimming speeds or trajectories. Geometric morphometric analysis showed a pH-dependent, size-mediated change in shape, suggesting a coordinated morphological adjustment to maintain swimming performance under acidified conditions. Quantification of the biomechanics and behavioral aspects of swimming improves predictions of larval survival and dispersal under present-day and future environmental conditions.  相似文献   

7.
Previous studies have shown that at least two lineages of Enallagma damselflies (Odonata: Coenagrionidae) shifted from inhabiting lakes with fish as top predators to inhabiting ponds and lakes with large dragonflies as the top predators. In adapting to living with the new predator type, these lineages evolved much greater swimming speeds to avoid attacking dragonflies. In this paper, I test whether biochemical adaptations to fuel swimming arose in concert with previously identified morphological changes that increase swimming speed. I assayed the mass-specific enzyme activities of three enzymes involved in fueling strenuous activity: pyruvate kinase and lactate dehydrogenase (enzymes involved in glycolysis) and arginine kinase (the enzyme that recharges the ATP pool). Enzyme activities were determined for 14 Enallagma species from across the genus. Species that coexist with dragonfly predators had significantly higher mass-specific arginine kinase activities than species that coexist with fish, and the results of evolutionary contrasts analyses indicate that this difference between the two groups is the result of evolutionary change associated with the habitat shifts of lineages from fish lakes to dragonfly lakes. Although significant evolution was documented for lactate dehydrogenase and pyruvate kinase across the genus, evolutionary change in the activities of these enzymes was not consistent with adaptation to coexisting with dragonfly predators. Swimming bouts to avoid dragonfly predators last for only a few seconds, and the action of arginine kinase to phosphorylate ADP to make ATP will extend the duration of maximal exertion for swimming for a few seconds. However, much longer time periods (over 45 sec) are required to generate ATP via glycolysis. Therefore, selection may have favored adaptation only at the arginine kinase locus.  相似文献   

8.
Detecting objects in their paths is a fundamental perceptional function of moving organisms. Potential risks and rewards, such as prey, predators, conspecifics or non-biological obstacles, must be detected so that an animal can modify its behaviour accordingly. However, to date few studies have considered how animals in the wild focus their attention. Dolphins and porpoises are known to actively use sonar or echolocation. A newly developed miniature data logger attached to a porpoise allows for individual recording of acoustical search efforts and inspection distance based on echolocation. In this study, we analysed the biosonar behaviour of eight free-ranging finless porpoises (Neophocaena phocaenoides) and demonstrated that these animals inspect the area ahead of them before swimming silently into it. The porpoises inspected distances up to 77 m, whereas their swimming distance without using sonar was less than 20 m. The inspection distance was long enough to ensure a wide safety margin before facing real risks or rewards. Once a potential prey item was detected, porpoises adjusted their inspection distance from the remote target throughout their approach.  相似文献   

9.
Migration is a commonly described phenomenon in nature that is often caused by spatial and temporal differences in habitat quality. However, as migration requires energy, the timing of migration may depend not only on differences in habitat quality, but also on temporal variation in migration costs. Such variation can, for instance, arise from changes in wind or current velocity for migrating birds and fish, respectively. Whereas behavioural responses of birds to such changing environmental conditions have been relatively well described, this is not the case for fish, although fish migrations are both ecologically and economically important. We here use passive and active telemetry to study how winter migrating roach regulate swimming speed and distance travelled per day in response to variations in head current velocity. Furthermore, we provide theoretical predictions on optimal swimming speeds in head currents and relate these to our empirical results. We show that fish migrate farther on days with low current velocity, but travel at a greater ground speed on days with high current velocity. The latter result agrees with our predictions on optimal swimming speed in head currents, but disagrees with previously reported predictions suggesting that fish ground speed should not change with head current velocity. We suggest that this difference is due to different assumptions on fish swimming energetics. We conclude that fish are able to adjust both swimming speed and timing of swimming activity during migration to changes in head current velocity in order to minimize energy use.  相似文献   

10.
Predation threat-associated behavioral response was studied in Rana temporalis tadpoles to discover the importance of predators’ visual and chemical cues (kairomones and diet-derived metabolites of consumed prey) in evoking antipredator behavior. The caged predators (dragonfly larvae) fed on prey tadpoles or insects (Notonecta spp.) and water conditioned with the predators provided the threat stimuli to the tadpole prey. The predators’ visual cues were ineffective in evoking antipredator behaviors in the tadpole prey. However, exposure to caged tadpole-fed predators or water conditioned with tadpole-fed predators elicited predator avoidance behavior in the tadpoles; they stayed away from the predators, significantly reduced swimming activity (swimming time and distance traveled), and increased burst speed. Interestingly, exposure to water conditioned with starved predators did not elicit any antipredator behavior in the prey. Further, the antipredator responses of predator-experienced tadpoles were significantly greater than those exhibited by predator-na?ve tadpoles. The study shows that R. temporalis tadpoles assess predation threat based exclusively on chemical cues emanating from the predators’ dietary metabolites and that the inclusion of conspecific prey items in the diet of the predators is perceived as a threat. The study also shows that antipredator behavior in these tadpoles is innate and is enhanced during subsequent encounters with the predators.  相似文献   

11.
Van Haastert PJ 《PloS one》2011,6(11):e27532
Amoeboid cells crawl using pseudopods, which are convex extensions of the cell surface. In many laboratory experiments, cells move on a smooth substrate, but in the wild cells may experience obstacles of other cells or dead material, or may even move in liquid. To understand how cells cope with heterogeneous environments we have investigated the pseudopod life cycle of wild type and mutant cells moving on a substrate and when suspended in liquid. We show that the same pseudopod cycle can provide three types of movement that we address as walking, gliding and swimming. In walking, the extending pseudopod will adhere firmly to the substrate, which allows cells to generate forces to bypass obstacles. Mutant cells with compromised adhesion can move much faster than wild type cells on a smooth substrate (gliding), but cannot move effectively against obstacles that provide resistance. In a liquid, when swimming, the extending pseudopods convert to side-bumps that move rapidly to the rear of the cells. Calculations suggest that these bumps provide sufficient drag force to mediate the observed forward swimming of the cell.  相似文献   

12.
Aquatic animals generate electrical field potentials which may be monitored by predators or conspecifics. Many crustaceans use rapid, forceful contractions of the flexor and extensor muscles to curl and extend their abdomens during swimming in escape and locomotion. When crayfish swim they generate electrical field potentials that can be recorded by electrodes nearby in the water. In general, it is reasonable to assume that larger bodied crayfish will generate signals of greater amplitude because they have larger muscles. It is not known, however, how activity in particular muscles and nerves combines to produce the compound electrical waveform recorded during swimming. We therefore investigated the relationship between abdominal muscle, body size and the amplitude of nearby tailflip potentials in the freshwater crayfish (Cherax destructor). We found that amplitude was correlated positively with abdominal muscle mass. The mean amplitude recorded from the five smallest and five largest individuals differed by 440 microV, a difference sufficiently large to be of significance to predators and co-inhabitants in the wild.  相似文献   

13.
The ciliated protozoan, Paramecium, broadcasts the activity of its individual ion channel classes through its swimming behaviour. This fact has made it possible to isolate mutants with defective ion currents, simply by selecting individuals with abnormal swimming patterns. At least four of Paramecium's ion currents are activated by rising intracellular calcium concentration, including two K+ currents and a Na+ current. A variety of cell lines with defects in these Ca2(+)-dependent currents have been isolated: in several cases, the defects have been traced to mutations in the structural gene for calmodulin. Sequence analysis of calmodulins from these and other Ca2(+)-dependent ion-current mutants may enable a detailed mapping of putative channel interaction domains on the surface of the calmodulin molecule.  相似文献   

14.
The relationship between morphology of the mechanosensory lateral line system and behavior is essentially unknown in elasmobranch fishes. Gross anatomy and spatial distribution of different peripheral lateral line components were examined in several batoids (Raja eglanteria, Narcine brasiliensis, Gymnura micrura, and Dasyatis sabina) and a bonnethead shark, Sphyrna tiburo, and are interpreted to infer possible behavioral functions for superficial neuromasts, canals, and vesicles of Savi in these species. Narcine brasiliensis has canals on the dorsal surface with 1 pore per tubule branch, lacks a ventral canal system, and has 8–10 vesicles of Savi in bilateral rows on the dorsal rostrum and numerous vesicles ( = 65 ± 6 SD per side) on the ventral rostrum. Raja eglanteria has superficial neuromasts in bilateral rows along the dorsal body midline and tail, a pair anterior to each endolymphatic pore, and a row of 5–6 between the infraorbital canal and eye. Raja eglanteria also has dorsal canals with 1 pore per tubule branch, pored and non-pored canals on the ventral surface, and lacks a ventral subpleural loop. Gymnura micrura has a pored dorsal canal system with extensive branch patterns, a pored ventral hyomandibular canal, and non-pored canal sections around the mouth. Dasyatis sabina has more canal pores on the dorsal body surface, but more canal neuromasts and greater diameter canals on the ventral surface. Sphyrna tiburo has primarily pored canals on both the dorsal and ventral surfaces of the head, as well as the posterior lateral line canal along the lateral body surface. Based upon these morphological data, pored canals on the dorsal body and tail of elasmobranchs are best positioned to detect water movements across the body surface generated by currents, predators, conspecifics, or distortions in the animal's flow field while swimming. In addition, pored canals on the ventral surface likely also detect water movements generated by prey. Superficial neuromasts are protected from stimulation caused by forward swimming motion by their position at the base of papillar grooves, and may detect water flow produced by currents, prey, predators, or conspecifics. Ventral non-pored canals and vesicles of Savi, which are found in benthic batoids, likely function as tactile or vibration receptors that encode displacements of the skin surface caused by prey, the substrate, or conspecifics. This mechanotactile mechanism is supported by the presence of compliant canal walls, neuromasts that are enclosed in wide diameter canals, and the presence of hair cells in neuromasts that are polarized both parallel to and nearly perpendicular to the canal axis in D. sabina. The mechanotactile, schooling, and mechanosensory parallel processing hypotheses are proposed as future directions to address the relationships between morphology and physiology of the mechanosensory lateral line system and behavior in elasmobranch fishes.  相似文献   

15.
Although the neurobiology and physiology of sea hares are extensively studied, comparatively little is known about their behaviour or ecology. Several species of sea hares swim, but the function of swimming is unclear. In this paper, we tested the hypotheses that swimming in Aplysia brasiliana serves to find food and mates, and to escape predators. Our data strongly support the hypothesis that swimming in A. brasiliana is related to feeding. Sea hares deprived of food overnight swam 12 times longer than ones that had been fed. When sea hares contacted food while swimming they invariably stopped, while those contacting a plastic algal mimic mostly continued to swim. Our experiments provided no evidence to support the hypothesis that swimming in sea hares is related to social behaviour. Sea hares deprived of copulatory mates for 3 days did not swim longer than ones held in copulating groups. Moreover, swimming sea hares never stopped swimming upon encountering a conspecific. Our experiments also supported the hypothesis that swimming in sea hares is related to predation. Sea hares stimulated with a standardised tail pinch and exposed to ink of conspecifics swam four times longer than control individuals, and tail-pinched sea hares that released ink swam five times longer than ones that did not release ink. However, because predators of adult sea hares are mostly lacking and because sea hares often swim spontaneously without predators being present, we conclude that swimming behaviour in A. brasiliana is primarily related to food-finding.  相似文献   

16.
Laurila A  Pakkasmaa S  Merilä J 《Oecologia》2006,147(4):585-595
Growth and development rates often differ among populations of the same species, yet the factors maintaining this differentiation are not well understood. We investigated the antipredator defences and their efficiency in two moor frog Rana arvalis populations differing in growth and development rates by raising tadpoles in outdoor containers in the nonlethal presence and absence of three different predators (newt, fish, dragonfly larva), and by estimating tadpole survival in the presence of free-ranging predators in a laboratory experiment. Young tadpoles in both populations reduced activity in the presence of predators and increased hiding behaviour in the presence of newt and fish. Older tadpoles from the slow-growing Gotland population (G) had stronger hiding behaviour and lower activity in all treatments than tadpoles from the fast-growing Uppland population (U). However, both populations showed a plastic behavioural response in terms of reduced activity. The populations differed in induced morphological defences especially in response to fish. G tadpoles responded with relatively long and deep body, short tail and shallow tail muscle, whereas the responses in U tadpoles were often the opposite and closer to the responses induced by the other predators. U tadpoles metamorphosed earlier, but at a similar size to G tadpoles. There was no evidence that growth rate was affected by predator treatments, but tadpoles metamorphosed later and at larger size in the predator treatments. G tadpoles survived better in the presence of free-ranging predators than U tadpoles. These results suggest that in these two populations, low growth rate was linked with low activity and increased hiding, whereas high growth rate was linked with high activity and less hiding. The differences in behaviour may explain the difference in survival between the populations, but other mechanisms (i.e. differences in swimming speed) may also be involved. There appears to be considerable differentiation in antipredator responses between these two R. arvalis populations, as well as with respect to different predators.  相似文献   

17.
During the pelagic larval phase, fish dispersal may be influenced passively by surface currents or actively determined by swimming behaviour. In situ observations of larval swimming are few given the constraints of field sampling. Active behaviour is therefore often inferred from spatial patterns in the field, laboratory studies, or hydrodynamic theory, but rarely are these approaches considered in concert. Ichthyoplankton survey data collected during 2004 and 2006 from coastal Newfoundland show that changes in spatial heterogeneity for multiple species do not conform to predictions based on passive transport. We evaluated the interaction of individual larvae with their environment by calculating Reynolds number as a function of ontogeny. Typically, larvae hatch into a viscous environment in which swimming is inefficient, and later grow into more efficient intermediate and inertial swimming environments. Swimming is therefore closely related to length, not only because of swimming capacity but also in how larvae experience viscosity. Six of eight species sampled demonstrated consistent changes in spatial patchiness and concomitant increases in spatial heterogeneity as they transitioned into more favourable hydrodynamic swimming environments, suggesting an active behavioural element to dispersal. We propose the tandem assessment of spatial heterogeneity and hydrodynamic environment as a potential approach to understand and predict the onset of ecologically significant swimming behaviour of larval fishes in the field.  相似文献   

18.
Microbial eukaryotes, critical links in aquatic food webs, are unicellular, but some, such as choanoflagellates, form multicellular colonies. Are there consequences to predator avoidance of being unicellular vs. forming larger colonies? Choanoflagellates share a common ancestor with animals and are used as model organisms to study the evolution of multicellularity. Escape in size from protozoan predators is suggested as a selective factor favoring evolution of multicellularity. Heterotrophic protozoans are categorized as suspension feeders, motile raptors, or passive predators that eat swimming prey which bump into them. We focused on passive predation and measured the mechanisms responsible for the susceptibility of unicellular vs. multicellular choanoflagellates, Salpingoeca helianthica, to capture by passive heliozoan predators, Actinosphaerium nucleofilum, which trap prey on axopodia radiating from the cell body. Microvideography showed that unicellular and colonial choanoflagellates entered the predator's capture zone at similar frequencies, but a greater proportion of colonies contacted axopodia. However, more colonies than single cells were lost during transport by axopodia to the cell body. Thus, feeding efficiency (proportion of prey entering the capture zone that were engulfed in phagosomes) was the same for unicellular and multicellular prey, suggesting that colony formation is not an effective defense against such passive predators.  相似文献   

19.
Explanations for the coexistence of multiple species from the same functional group or taxonomic clade frequently include fine‐scale resource partitioning. However, despite the hypothesized importance of niche partitioning, we know relatively little about the underlying mechanisms. For example, differences in resource use may be fixed consequences of organism traits, or they may be achieved via context‐dependent behaviors. In this study we investigated mechanisms of microhabitat partitioning using eight species of marine mesograzers inhabiting seagrass and algae habitats, using laboratory trials to measure microhabitat use in the presence and absence of both predators and competitors. We found clear evidence for microhabitat partitioning between the species, which account for over 60% of the mesograzers commonly found in this system and vary in both body size and the ability to build tubes on habitat substrates. Species‐specific microhabitat use was poorly predicted by these two traits, but remained remarkably consistent across contexts. Habitat use was not affected by the presence of fish predators common in this system, even though predation pressure is thought to place strong constraints on microhabitat in communities of plant‐associated arthropods. The presence of competing species also did not affect the relative separation of microhabitat use. Behavioral responses to potential competitors did cause significant changes in microhabitat use in all of the smallest species, but these changes did not depend on competitor identity and were relatively small compared to among‐species patterns of microhabitat partitioning. The consistency of species‐specific microhabitat use, regardless of the presence of predators or competitors, should make coexistence most likely among species that differ in these choices. For these species, it appears that the benefits accrued from their selected microhabitats are not affected by species interactions, or that any benefits of alternative microhabitat use are outweighed by risks associated with movement.  相似文献   

20.
Re-establishing the natural connectivity of rivers using fishways may mitigate the unfavourable effects of dam construction on riverine biodiversity and freshwater fish populations. Knowledge of the swimming performance of target species in specific regions is critical for designing fishways with a high passage efficiency. Substrate roughening with river stones of fishways is considered to improve fish swimming capacity by benefiting from reduced-velocity zones with lower energetic costs. However, the effectiveness of rough substrates in energy metabolism is rarely tested. We investigated the effect of substrate roughening on the swimming capacity, oxygen consumption and behaviour of Schizothorax wangchiachii from the Heishui River in a flume-type swimming respirometer. The results showed that substrate roughening improved critical and burst swimming speed by ~12.9% and ~15.0%, respectively, compared to the smooth substrate. Our results demonstrate that increased reduced-velocity zones, lowered metabolic rate and tail-beat frequency support our hypothesis that lower energetic costs improve fish swimming performance in rough substrate compared to smooth treatment. The traversable flow velocity model predicted that maximum traversable flow velocity and maximum ascent distance were higher over rough compared to smooth substrate fishways. Fishway substrate roughening may be a practical approach to improve fish swimming upstream for demersal riverine fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号