首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Objectives

Oxidative stress (OS) is defined as an imbalance in the production of reactive oxygen species and the capacity of antioxidant defenses. The objective of this work was to investigate OS and antioxidant capacity in pregnant women.

Methods

Parameters of the oxidative status and antioxidant capacity in serum and whole blood were evaluated in thirty-nine women with normal pregnancy.

Results

The assessment of antioxidants indicated an increase in superoxide dismutase and catalase activities (P < 0.05 and P < 0.01) and a decrease in ascorbic acid levels and the total content of sulfhydryl (P < 0.05 and P < 0.001). Additionally, when the pro-oxidant system was investigated we found an increase (P < 0.01) in malondialdehyde and no significant change (P > 0.05) in protein carbonylation.

Discussion

This study demonstrates that there is a change in the pro-oxidant and antioxidant defenses associated with body and circulation changes that are inherent to the pregnancy process.  相似文献   

2.
3.
Oxidative stress and antioxidant defenses in ethanol-induced cell injury   总被引:8,自引:0,他引:8  
Although in the past several mechanisms and factors have been proposed to be responsible for alcoholic liver disease (ALD), at present the involvement of oxygen free radicals and consequently of oxidative stress has acquired remarkable credit. In numerous experimental studies it has been shown the occurrence of alcohol-induced generation of oxygen- and ethanol-derived free radicals through different pathways and from different sources. Mitochondria appear to be both an important source of reactive oxygen species (ROS) and also a primary target of ethanol-induced damage. The consistent induction of the mitochondrial antioxidant enzyme manganese superoxide dismutase (Mn-SOD) observed in experimental animals after acute and chronic ethanol administration has all the characteristics of a "stress response" to an oxidative insult.  相似文献   

4.
In this article, oxidative stress and enzymic-non-enzymic antioxidants status were investigated in children with acute pneumonia. Our study included 28 children with acute pneumonia and 29 control subjects. The age ranged from 2 to 11 years (4.57+/-2.13 years) and 2 to 12 years (4.89+/-2.22 years) in the study and control groups, respectively. Whole blood malondialdehyde (MDA) and reduced glutathione (GSH), serum beta-carotene, retinol, vitamin C, vitamin E, catalase (CAT), ceruloplasmin (CLP), total bilirubin, erythrocyte superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels were studied in all subjects. There was a statistically significant difference between the groups for all parameters except for serum CAT. Whole blood MDA, serum CLP and total bilirubin levels were higher in the study group than those of the control group. However, SOD, GPx, beta-carotene, retinol, vitamin C, vitamin E and GSH levels were lower in the study group compared with the control group. All antioxidant vitamin activities were decreased in children with acute pneumonia. Our study demonstrated that oxidative stress was increased whereas enzymic and non-enzymic antioxidant activities were significantly decreased in children with acute pneumonia.  相似文献   

5.
The aim of this work was to evaluate the effects of prolonged starvation and refeeding on antioxidant status and some metabolic-related parameters in common dentex (Dentex dentex) liver. Fish deprived of food for 5 weeks showed a significant increase in lipid peroxidation, measured as malondialdehyde (MDA) levels. The activity of the antioxidative enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) in starved fish significantly increased (by 42%, 22%, and 52%, respectively), whereas glutathione reductase (GR) activity was significantly depressed by 53% compared to controls. No qualitative changes in the SOD isoenzymatic pattern were detected by nondenaturing PAGE analysis, but the isoforms corresponding to CuZn-SOD I and II were enhanced in starved fish. The activity of the enzymes indicative of oxidative metabolism, beta-hydroxyacyl CoA dehydrogenase (HOAD) and citrate synthase (CS), significantly increased (by 123% and 28%, respectively), and that of glucose-6-phosphate dehydrogenase (G6PDH) was inhibited by 56%. Oxidative damage under these circumstances is reversible since all biomarkers assayed returned to control values after refeeding. Our results show that prolonged starvation leads to a pro-oxidant situation and oxidative stress despite activation of antioxidant defense mechanisms, and that inhibition of G6PDH activity might be responsible for this failure in cellular antioxidant defenses.  相似文献   

6.
镉胁迫小海绵羊肚菌氧化损伤及其抗氧化防御   总被引:1,自引:0,他引:1  
羊肚菌Morchella是全球广泛分布的食药用真菌,重金属镉(Cd)在羊肚菌中的积累受到越来越多的关注。然而,羊肚菌镉积累的机理尚不清楚。本研究通过在0–5.0mg/LCd浓度环境中培养小海绵羊肚菌Morchella spongiola,测定Cd胁迫下其菌丝生长速率、丙二醛(MDA)、过氧化氢(H2O2)、超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)、谷胱甘肽(GSH)、抗坏血酸(ASA)及细胞Cd积累量等生理生化指标,旨在明晰小海绵羊肚菌响应Cd毒害的抗氧化防御响应机理。结果表明随着Cd浓度的增加,小海绵羊肚菌菌丝生长呈现出“升-降-升-降”的双峰响应变化,其中0.15、0.90和1.50 mg/L为菌丝生长Cd浓度关键拐点。Cd胁迫导致的氧化损伤与其初始浓度呈现正相关,胁迫3 d时MDA和H2O2含量显示出较大提升,5.0 mg/L处理组MDA和H2O2含量比对照组分别高出5.80倍和6.08...  相似文献   

7.
The purpose of this work was to evaluate the response of the antioxidant system of goldfish Carassius auratus during anoxia and reoxygenation. The exposure of goldfish to 8 h of anoxia induced a 14% decrease in total glutathione levels in the kidney, although the liver, brain, and muscle were unaffected. Anoxia also resulted in increases in the activities of liver catalase, brain glucose-6-phosphate dehydrogenase, and brain glutathione peroxidase (by 38, 26, and 79%, respectively) and a decrease in kidney catalase activity (by 17.5%). After 14 h of reoxygenation, liver catalase and brain glutathione peroxidase activities remained higher than controls and several other tissue-specific changes occurred in enzyme activities. Superoxide dismutase activity was unaffected by anoxia and reoxygenation. The levels of conjugated dienes, as indicators of lipid peroxidation, increased by 114% in liver after 1 h of reoxygenation and by 75% in brain after 14 h of reoxygenation. Lipid peroxidation was unaffected in kidney and depressed during anoxia and reoxygenation (by 44-61%) in muscle. Regulation of the goldfish antioxidant system during anoxia may constitute a biochemical mechanism that minimizes oxidative stress following reoxygenation.  相似文献   

8.
We have measured the levels of typical end products of the processes of lipid peroxidation, protein oxidation, and total antioxidant capacity (TAC) in skin fibroblasts and lymphoblasts taken from patients with familial Alzheimer's disease (FAD), sporadic Alzheimer's disease (AD), and age-matched healthy controls. Compared to controls, the fibroblasts and lymphoblasts carrying amyloid precursor protein (APP) and presenilin-1 (PS-1) gene mutations showed a clear increase in lipoperoxidation products, malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE). In contrast, the antioxidant defenses of cells from FAD patients were lower than those from normal subjects. Lipoperoxidation and antioxidant capacity in lymphoblasts from patients affected by sporadic AD were virtually indistinguishable from the basal values of normal controls. An oxidative attack on protein gave rise to greater protein carbonyl content in FAD patients than in age-matched controls. Furthermore, ADP ribosylation levels of poly(ADP-ribose) polymerase (PARP) nuclear substrates were significantly raised, whereas the PARP content did not differ significantly between fibroblasts carrying gene mutations and control cells. These results indicate that peripheral cells carrying APP and PS-1 gene mutations show altered levels of oxidative markers even though they are not directly involved in the neurodegenerative process of AD. These results support the hypothesis that oxidative damage to lipid, protein, and DNA is an important early event in the pathogenesis of AD.  相似文献   

9.
Davies KJ 《IUBMB life》2000,50(4-5):279-289
Oxidative stress is an unavoidable consequence of life in an oxygen-rich atmosphere. Oxygen radicals and other activated oxygen species are generated as by-products of aerobic metabolism and exposure to various natural and synthetic toxicants. The "Oxygen Paradox" is that oxygen is dangerous to the very life-forms for which it has become an essential component of energy production. The first defense against oxygen toxicity is the sharp gradient of oxygen tension, seen in all mammals, from the environmental level of 20% to a tissue concentration of only 3-4% oxygen. These relatively low tissue levels of oxygen prevent most oxidative damage from ever occurring. Cells, tissues, organs, and organisms utilize multiple layers of antioxidant defenses and damage removal, and replacement or repair systems in order to cope with the remaining stress and damage that oxygen engenders. The enzymes comprising many of these protective systems are inducible under conditions of oxidative stress adaptation, in which the expression of over 40 mammalian genes is upregulated. Mitotic cells have the additional defensive ability of entering a transient growth-arrested state (in the first stages of adaptation) in which DNA is protected by histone proteins, energy is conserved by diminished expression of nonessential genes, and the expression of shock and stress proteins is greatly increased. Failure to fully cope with an oxidative stress can switch mitotic cells into a permanent growth-arrested, senescence-like state in which they may survive for long periods. Faced with even more severe oxidative stress, or the declining protective enzymes and adaptive capacity associated with aging, cells may "sacrifice themselves" by apoptosis, which protects surrounding healthy tissue from further damage. Only under the most severe oxidative stress conditions will cells undergo a necrotic death, which exposes surrounding tissues to the further vicissitudes of an inflammatory immune response. This remarkable array of systems for defense; damage removal, replacement, and repair; adaptation; growth modulation; and apoptosis make it possible for us to enjoy life in an oxygen-rich environment.  相似文献   

10.
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex pathogenesis. Although regulatory T cells (Tregs) have previously been studied in AD, their role remains controversial, likely owing to patient heterogeneity. Thus, we recruited adult AD patients and age‐matched healthy controls, and assessed their filaggrin (FLG) genotype, serum IgE level, and eczema area and severity index (EASI). We found increased proportions of all circulating Treg subpopulations in AD patients. Moreover, we show positive correlations between circulating Tregs and serum IgE FLG null mutations limited the expansion of both memory and effector Tregs and enhanced that of recently thymus‐emigrated Tregs. Furthermore, proportions of circulating Th2‐ or Th17‐Tregs but not Th1‐Tregs were increased in AD patients, and accentuated by FLG null mutations, thereby mimicking the immune deviation observed in Th cell populations. Moreover, ICOS+ Tregs showed reduced production of interleukin‐10, suggesting impaired immunosuppression in AD. The level of demethylation of FOXP3i1, which reflects the stability of FOXP3 expression, was similar in the blood and skin of AD patients and healthy controls. Overall, these results show that Tregs may participate into AD pathogenesis and that FLG null mutations exert further modifications on specific subpopulations of circulating Tregs.  相似文献   

11.
Parasitic protozoa cause several diseases, affecting hundreds of millions, particularly in underdeveloped countries. Although these organisms are eukaryotic cells, some of them present major differences with their mammalian host in selected metabolic pathways. These differences may be exploited as targets for developing better pharmacological agents for the treatment of specific parasitic diseases. This review describes some of the differences in terms of antioxidant defenses between these organisms and their mammalian host, which may provide useful targets for the treatment of these diseases. Some of the potential targets are: (i). iron metabolism in Plasmodium, (ii). the presence of a Fe-containing form of superoxide dismutase in trypanosomatids and malaria-causing parasites, (iii). the unique trypanothione-dependent antioxidant metabolism in trypanosomatids, (iv). the ascorbate peroxidase found in Trypanosoma cruzi and perhaps present in other trypanosomatids.  相似文献   

12.
In this review, it is our aim 1) to describe the high diversity in molecular and structural antioxidant defenses against oxidative stress in animals, 2) to extend the traditional concept of antioxidant to other structural and functional factors affecting the "whole" organism, 3) to incorporate, when supportable by evidence, mechanisms into models of life-history trade-offs and maternal/epigenetic inheritance, 4) to highlight the importance of studying the biochemical integration of redox systems, and 5) to discuss the link between maximum life span and antioxidant defenses. The traditional concept of antioxidant defenses emphasizes the importance of the chemical nature of molecules with antioxidant properties. Research in the past 20 years shows that animals have also evolved a high diversity in structural defenses that should be incorporated in research on antioxidant responses to reactive species. Although there is a high diversity in antioxidant defenses, many of them are evolutionary conserved across animal taxa. In particular, enzymatic defenses and heat shock response mediated by proteins show a low degree of variation. Importantly, activation of an antioxidant response may be also energetically and nutrient demanding. So knowledge of antioxidant mechanisms could allow us to identify and to quantify any underlying costs, which can help explain life-history trade-offs. Moreover, the study of inheritance mechanisms of antioxidant mechanisms has clear potential to evaluate the contribution of epigenetic mechanisms to stress response phenotype variation.  相似文献   

13.
Oxidative stress results from a prooxidant-antioxidant imbalance, leading to cellular damage. It is mediated by free radicals, such as reactive oxygen species or reactive nitrogen species, that are generated during physiological aerobic metabolism and pathological inflammatory processes. Skin serves as a protective organ that plays an important role in defending both external and internal toxic stimuli and maintaining homeostasis. It is becoming increasingly evident that oxidative stress is involved in numerous skin diseases and that antioxidative strategies can serve as effective and easy methods for improving these conditions. Herein, we review dysregulated antioxidant systems and antioxidative therapeutic strategies in dermatology.  相似文献   

14.
Atopic dermatitis (AD) is a chronic inflammatory skin disease of unknown etiology. To examine the involvement of impaired homeostasis of oxygen/nitrogen radicals in childhood AD, we compared the levels of urinary 8-hydroxy-2'-deoxyguanosine (marker of oxidative stress), nitrite/nitrate (marker of nitric oxide synthesis) and selenium (marker of selenium store) in 27 children with AD to those of 25 healthy control children. Urinary 8-hydroxy-2'-deoxyguanosine was significantly higher and nitrite/nitrate levels were significantly lower in patients with AD than in the control. Urinary selenium levels were similar in both groups. Our findings suggest that impaired homeostasis of oxygen/nitrogen radicals and increased oxidative stress are involved in the pathophysiology of childhood AD, and indicate that suppression of oxidative stress might be a potentially useful strategy for the treatment of AD.  相似文献   

15.
Fishes are always exposed to various environmental stresses and the chances of succumbing to such stresses are of great physiological concern. Any change in temperature from the ambient condition can induce various metabolic and physiological changes in the body. The present study evaluates the effects of temperature induced stress on the antioxidant profile of Etroplus suratensis such as superoxide dismutase, catalase, glutathione peroxidase and lipid peroxidation. Fishes of same size were kept in a thermostatized bath at three different temperature regimes viz 16 °C, 27 °C (ambient temperature) and 38 °C for 72 h. These temperatures were selected based on the CT Max (Critical Thermal Maximum) and CT Min (Critical Thermal Minimum) exhibited by E. suratensis. Superoxide dismutase and catalase activity was found maximum in brain and muscle respectively during the 48th hour of exposure in fishes kept at 38 °C. At 16 °C the antioxidant response of glutathione peroxidase was maximum in muscles, whereas the lipid peroxidation rate was found to be high in gills compared to other tissues. The profound increase in the levels of oxidative stress related biomarkers indicate that the thermal stressors severely affected oxidative state of E. suratensis by the second day of experiment. Such down-regulation of redox state accompanied with the induction of oxidative stress cascade may lead to physiological damage in various tissues in fishes, in vivo. However current data indicate that a transition to low and high temperature environment from ambient condition severely affected the levels and profile of the antioxidant markers overtime in E. suratensis.  相似文献   

16.
Dapsone (DDS) is currently used in the treatment of leprosy, malaria and in infections with Pneumocystis jirovecii and Toxoplasma gondii in AIDS patients. Adverse effects of DDS involve methemoglobinemia and hemolysis and, to a lower extent, liver damage, though the mechanism is poorly characterized. We evaluated the effect of DDS administration to male and female rats (30 mg/kg body wt, twice a day, for 4 days) on liver oxidative stress through assessment of biliary output and liver content of reduced (GSH) and oxidized (GSSG) glutathione, lipid peroxidation, and expression/activities of the main antioxidant enzymes glutathione peroxidase, superoxide dismutase, catalase and glutathione S-transferase. The influence of DDS treatment on expression/activity of the main DDS phase-II-metabolizing system, UDP-glucuronosyltransferase (UGT), was additionally evaluated. The involvement of dapsone hydroxylamine (DDS-NHOH) generation in these processes was estimated by comparing the data in male and female rats since N-hydroxylation of DDS mainly occurs in males. Our studies revealed an increase in the GSSG/GSH biliary output ratio, a sensitive indicator of oxidative stress, and in lipid peroxidation, in male but not in female rats treated with DDS. The activity of all antioxidant enzymes was significantly impaired by DDS treatment also in male rats, whereas UGT activity was not affected in any sex. Taken together, the evidence indicates that DDS induces oxidative stress in rat liver and that N-hydroxylation of DDS was the likely mediator. Impairment in the activity of enzymatic antioxidant systems, also associated with DDS-NHOH formation, constituted a key aggravating factor.  相似文献   

17.
Cystic fibrosis is a lethal autosomal recessive condition caused by a defect of the transmembrane conductance regulator gene that has a key role in cell homeostasis. A dysfunctional cystic fibrosis transmembrane conductance regulator impairs the efflux of cell anions such as chloride and bicarbonate, and also that of other solutes such as reduced glutathione. This defect produces an increased viscosity of secretions together with other metabolic defects of epithelia that ultimately promote the obstruction and fibrosis of organs. Recurrent pulmonary infections and respiratory dysfunction are main clinical consequences of these pathogenetic events, followed by pancreatic and liver insufficiency, diabetes, protein-energy malnutrition, etc. This complex comorbidity is associated with the extensive injury of different biomolecular targets by reactive oxygen species, which is the biochemical hallmark of oxidative stress. These biological lesions are particularly pronounced in the lung, in which the extent of oxidative markers parallels that of inflammatory markers between chronic events and acute exacerbations along the progression of the disease. Herein, an abnormal flux of reactive oxygen species is present by the sustained activation of neutrophils and other cystic fibrosis-derived defects in the homeostatic processes of pulmonary epithelia and lining fluids. A sub-optimal antioxidant protection is believed to represent a main contributor to oxidative stress and to the poor control of immuno-inflammatory pathways in these patients. Observed defects include an impaired reduced glutathione metabolism and lowered intake and absorption of fat-soluble antioxidants (vitamin E, carotenoids, coenzyme Q-10, some polyunsaturated fatty acids, etc.) and oligoelements (such as Se, Cu and Zn) that are involved in reactive oxygen species detoxification by means of enzymatic defenses. Oral supplements and aerosolized formulations of thiols have been used in the antioxidant therapy of this inherited disease with the main aim of reducing the extent of oxidative lesions and the rate of lung deterioration. Despite positive effects on laboratory end points, poor evidence was obtained on the side of clinical outcome so far. These aspects examined in this critical review of the literature clearly suggest that further and more rigorous trials are needed together with new generations of pharmacological tools to a more effective antioxidant and anti-inflammatory therapy of cystic fibrosis patients. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

18.
Abstract

Objective

To estimate oxidative stress and antioxidant components during different stages of autoimmune liver diseases and assess their possible implication on disease progression.

Methods

We determined several markers of oxidative injury (isoprostane, aldehydes, protein carbonyls, 3-nitrotyrosine, and myeloperoxidase) and antioxidant components (glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase) in whole blood, serum, and urine in 49 patients with autoimmune cholestatic liver diseases (AC) and 36 patients with autoimmune hepatitis (AIH) and healthy subjects matched for sex and age.

Results

Both AC and AIH patients had increased levels of all lipid and protein oxidative injury products and significantly decreased whole blood glutathione levels compared to controls. AIH patients had significantly higher levels of aldehydes and glutathione peroxidase activity and significantly lower protein carbonyl levels compared to AC patients. Protein carbonyl and isoprostane levels increased and glutathione levels decreased gradually with progression from mild fibrosis to severe fibrosis and cirrhosis in both AC and AIH patients. In addition, both cirrhotic AC and AIH patients had significantly higher protein carbonyls compared to non-cirrhotics.

Discussion

We provide novel findings in support of a major contribution of oxidant/antioxidant imbalance in the progression of liver injury in AC and AIH.  相似文献   

19.
Atopic dermatitis (AD) is a cutaneous disease resulting from a defective barrier and dysregulated immune response. The severity scoring of atopic dermatitis (SCORAD) is used to classify AD. Noninvasive imaging approaches supplementary to SCORAD were investigated. Cr:forsterite laser‐based microscopy was employed to analyze endogenous third‐harmonic generation (THG) and second‐harmonic generation (SHG) signals from skin. Imaging parameters were compared between different AD severities. Three‐dimensional reconstruction of imaged skin layers was performed. Finally, statistic models from quantitative imaging parameters were developed for predicting disease severity. Our data demonstrate that THG signal intensity of lesional skin in AD were significantly increased and was positively correlated with AD severity. Characteristic gray level co‐occurrence matrix (GLCM) values were observed in more severe AD. In the 3D reconstruction video, individual dermal papilla and obvious fibrosis in the upper papillary dermis were easily identified. Our estimation models could predict the disease severity of AD patients with an accuracy of nearly 85%. The THG signal intensity and characteristic GLCM patterns are associated with AD severity and can serve as quantitative predictive parameters. Our imaging approach can be used to identify the histopathological changes of AD objectively, and to complement the SCORAD index, thus improving the accuracy of classifying AD severity.   相似文献   

20.
Prion diseases are characterized by the conversion of the normal cellular prion protein (PrP(C)) into a pathogenic isoform (PrP(Sc)). PrP(C) binds copper, has superoxide dismutase (SOD)-like activity in vitro, and its expression aids in the cellular response to oxidative stress. However, the interplay between PrPs (PrP(C), PrP(Sc) and possibly other abnormal species), copper, anti-oxidation activity and pathogenesis of prion diseases remain unclear. In this study, we reported dramatic depression of SOD-like activity by the affinity-purified PrPs from scrapie-infected brains, and together with significant reduction of Cu/Zn-SOD activity, correlates with significant perturbations in the divalent metals contents. We also detected elevated levels of nitric oxide and superoxide in the infected brains, which could be escalating the oxidative modification of cellular proteins, reducing gluathione peroxidase activity and increasing the levels of lipid peroxidation markers. Taken together, our results suggest that brain metal imbalances, especially copper, in scrapie infection is likely to affect the anti-oxidation functions of PrP and SODs, which, together with other cellular dysfunctions, predispose the brains to oxidative impairment and eventual degeneration. To our knowledge, this is the first study documenting a physiological connection between brain metals imbalances, the anti-oxidation function of PrP, and aberrations in the cellular responses to oxidative stress, in scrapie infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号