共查询到20条相似文献,搜索用时 15 毫秒
1.
《生物化学与生物物理学报:生物膜》2015,1848(2):544-553
Trapping in the endosomes is currently believed to represent the main barrier for transfection. Peptides, which allow endosomal escape have been demonstrated to overcome this barrier, similarly to the entry of viruses. However, the design principles of such endosomolytic peptides remain unclear. We characterized three analogs derived from membrane disrupting antimicrobial peptides (AMP), viz. LL-37, melittin, and bombolitin V, with glutamic acid substituting for all basic residues. These analogs are pH-sensitive and cause negligible membrane permeabilization and insignificant cytotoxicity at pH 7.4. However, at pH 5.0, prevailing in endosomes, membrane binding and hemolysis of human erythrocytes become evident. We first condensed the emerald green fluorescent protein (emGFP) containing plasmid by protamine, yielding 115 nm diameter soluble nanoplexes. For coating of the nanoplex surface with a lipid bilayer we introduced a hydrophobic tether, stearyl-octa-arginine (SR8). The indicated peptides were dissolved in methanol and combined with lipid mixtures in chloroform, followed by drying at RT under a nitrogen flow. The dry residues were hydrated with nanoplexes in Hepes, pH 7.4 yielding after a 30 min incubation at RT,rather monodisperse nanoparticles having an average diameter of 150–300 nm, measured by DLS and cryo-TEM. Studies with cell cultures showed the above peptides to yield expression levels comparable to those obtained using Lipofectamine 2000. However, unlike the polydisperse aggregates formed upon mixing Lipofectamine 2000 and plasmid, the procedure described yields soluble, and reasonably monodisperse nanoparticles, which can be expected to be suitable for gene delivery in vivo, using intravenous injection. 相似文献
2.
We present the synthesis of dual-responsive (pH and temperature) magnetic core-shell nanoparticles utilizing the grafting-from approach. First, oleic acid stabilized superparamagnetic maghemite (γ-Fe(2)O(3)) nanoparticles (NPs), prepared by thermal decomposition of iron pentacarbonyl, were surface-functionalized with ATRP initiating sites bearing a dopamine anchor group via ligand exchange. Subsequently, 2-(dimethylamino)ethyl methacrylate (DMAEMA) was polymerized from the surface by ATRP, yielding dual-responsive magnetic core-shell NPs (γ-Fe(2)O(3)@PDMAEMA). The attachment of the dopamine anchor group on the nanoparticle's surface is shown to be reversible to a certain extent, resulting in a grafting density of 0.15 chains per nm(2) after purification. Nevertheless, the grafted NPs show excellent long-term stability in water over a wide pH range and exhibit a pH- and temperature-dependent reversible agglomeration, as revealed by turbidimetry. The efficiency of γ-Fe(2)O(3)@PDMAEMA hybrid nanoparticles as a potential transfection agent was explored under standard conditions in CHO-K1 cells. Remarkably, γ-Fe(2)O(3)@PDMAEMA led to a 2-fold increase in the transfection efficiency without increasing the cytotoxicity, as compared to polyethyleneimine (PEI), and yielded on average more than 50% transfected cells. Moreover, after transfection with the hybrid nanoparticles, the cells acquired magnetic properties that could be used for selective isolation of transfected cells. 相似文献
3.
Iron oxide nanoparticles (IONPs) are broadly examined nanomaterials for their promising engagement of the progressive in biomedical application, for intense selective drug delivery and multimodal imaging. IONPs are commonly less price, and enhanced biocompatibility can be effectively functionalized with a broad range of functioning ligand, and have established to be active in improving clinical diagnostics tools and magnetic resonance imaging contrast agents. Consequently, IONPs could be used as a promising magnetic resonance imaging contrast. In this context, we have established an IONPs based framework for the multimodal in vitro imaging approach of gastric cancer cell lines that fast high level of glypican-3 protein (GLY-3) on the superficial. In this regards, a new GLY-3 peptide targeting model established and fabricated to IONPs. The aqueous property, biocompatibility profile and physical-chemical properties of the functionalized IONPs were characterised with various spectroscopical methods. The viability of the gastric SGC-7901 cells was examined by MTT assay. Further, the viability of the cells was evidenced through fluorescence staining methods. The binding ability and cellular uptake properties of naked IONPs and functionalized IONPs (GPC3@IONPs) were examined via laser scanning confocal microscopy (CLSM) in GLY-3 positive gastric cells (SGC-7901 cells). The obtained outcomes displayed that the GLY-3 functionalized IONPs remarkably improved the magnetic resonance imaging contrasts and were actively assured and occupied up by gastric cell lines without damaging the non-cancerous cells. 相似文献
4.
Hanwen Sun Xinjun Zhu Lianying Zhang Xiangling Gu Jinghe Wang Jing Li Yancong Zhang 《Biotechnology and Bioprocess Engineering》2013,18(4):648-654
Poly(2-(diethylamino)ethyl methacrylate) coated magnetic nanoparticles (PDEA-MNPs) were synthesized as a new gene nanocarrier to delivery plasmids (pEGFPN1 and pRL-TK) into human hepatoma (Hep G2) cells. The PDEA-MNPs shows the pH-sensitive property. These nanoparticles are positively charged at acidic pH and negatively charged at neutral or alkaline pH. The PDEAMNPs exhibited a low cytotoxicity in Hep G2 cells. PDEA-MNPs could bind and protect DNA from DNase I degradation. The transfection study demonstrated that the PDEA-MNPs could carry plasmid into Hep G2 cells and exhibited a high gene transfection efficiency. These results indicated that the novel magnetic nanoparticles could enhance gene transfection in vitro and hold the potential to be a promising non-viral nanodevice. 相似文献
5.
Hairs on the abdomen of honeybees contain dendrites and a rod and ring structure composed of black particles, presumed to be superparamagnetic (SPM) magnetite. The rod and ring were divided into compartments and each compartment approximated by a dipole. The magnetic fields were calculated at a point P at various locations for a change of the external geomagnetic field from zero to 0.5 G in 0.1 s. The magnetite amplifies the external field at the rod/ring-dendrite interface. The induced electric field and potential difference for a small circular area are in the order of 10–7 V/m and 10–13 V respectively. Mechanisms are proposed for amplifying the electric fields in the dendrite and in an integrating nerve fibre. A hypothesis is developed for associative learning of visual and magnetic stimuli. If magnetic and visual inputs are associated in the ganglion and in the brain, very small changes of either magnetic or visual inputs could be perceived. A bee could sequentially follow the images associated with magnetic gradients on a cloudy day and find the food source.This paper is dedicated to the memory of the late Prof. Dr. W. Reichardt, an outstanding scientist and personality, who will be greatly missed by all who knew him and his work 相似文献
6.
Hanessian S Grzyb JA Cengelli F Juillerat-Jeanneret L 《Bioorganic & medicinal chemistry》2008,16(6):2921-2931
Superparamagnetic iron oxide nanoparticles (SPIONs) are in clinical use for disease detection by MRI. A major advancement would be to link therapeutic drugs to SPIONs in order to achieve targeted drug delivery combined with detection. In the present work, we studied the possibility of developing a versatile synthesis protocol to hierarchically construct drug-functionalized-SPIONs as potential anti-cancer agents. Our model biocompatible SPIONs consisted of an iron oxide core (9-10 nm diameter) coated with polyvinylalcohols (PVA/aminoPVA), which can be internalized by cancer cells, depending on the positive charges at their surface. To develop drug-functionalized-aminoPVA-SPIONs as vectors for drug delivery, we first designed and synthesized bifunctional linkers of varied length and chemical composition to which the anti-cancer drugs 5-fluorouridine or doxorubicin were attached as biologically labile esters or peptides, respectively. These functionalized linkers were in turn coupled to aminoPVA by amide linkages before preparing the drug-functionalized-SPIONs that were characterized and evaluated as anti-cancer agents using human melanoma cells in culture. The 5-fluorouridine-SPIONs with an optimized ester linker were taken up by cells and proved to be efficient anti-tumor agents. While the doxorubicin-SPIONs linked with a Gly-Phe-Leu-Gly tetrapeptide were cleaved by lysosomal enzymes, they exhibited poor uptake by human melanoma cells in culture. 相似文献
7.
8.
9.
Magnetic nanoparticles for gene and drug delivery 总被引:1,自引:0,他引:1
Investigations of magnetic micro- and nanoparticles for targeted drug delivery began over 30 years ago. Since that time, major progress has been made in particle design and synthesis techniques, however, very few clinical trials have taken place. Here we review advances in magnetic nanoparticle design, in vitro and animal experiments with magnetic nanoparticle-based drug and gene delivery, and clinical trials of drug targeting. 相似文献
10.
Farnaz Assa Hossein Ajamein Hamideh Vaghari Omid Ahmadi 《Critical reviews in biotechnology》2017,37(4):492-509
The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works. 相似文献
11.
Drug and gene delivery using gold nanoparticles 总被引:2,自引:0,他引:2
Monolayer-functionalized gold nanoparticles provide attractive vehicles for pharmaceutical delivery applications as a result
of their size and the unique properties and release mechanisms imparted by their monolayer. This review provides examples
of recent advances in the field of drug and gene delivery using gold nanoparticles. 相似文献
12.
Protein-polymer conjugates were investigated as nonviral gene delivery vectors. BSA-poly(dimethylamino) ethyl methacrylate (PDMA) nanoparticles (nBSA) were synthesized using in situ atom transfer radical polymerization (in situ ATRP) and BSA as a macroinitiator. The diameter and charge of nBSA was a function of the ATRP reaction time and ranged from 5 to 15 nm and +8.9 to +22.5, respectively. nBSA were able to condense plasmid DNA (pDNA) and form polyplexes with an average diameter of 50 nm. nBSA/pDNA polyplexes transfected cells with similar efficiencies or better as compared to linear and branched PEI. Interestingly, the nBSA particle diameter and charge did not affect pDNA complexation and transgene expression, indicating that the same gene delivery efficiency can be achieved with lower charge ratios. We believe that with the use of protein-polymer conjugates additional functionality could be introduced to polyplexes by using different protein cores and, thus, they pose an interesting alternative to the design of nonviral gene delivery vectors. 相似文献
13.
Strategies for targeting therapeutic gene delivery. 总被引:5,自引:0,他引:5
K W Peng 《Molecular medicine today》1999,5(10):448-453
A major goal for gene therapy is to obtain targeted vectors that transfer genes efficiently to specific cell types. In theory, this can be achieved by targeting entry of the vector or by building gene expression cassettes that restrict gene expression to certain cell types. This review summarizes recent strategies to alter vector tropism for targeted gene delivery. 相似文献
14.
《Biocatalysis and Biotransformation》2013,31(2-3):71-76
AbstractMethods of cellulase immobilization on magnetic particles via glutaraldehyde binding were studied. The binding was confirmed by transmission electronic microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and vibrating sample magnetometry (VSM). Samples analyzed by TEM and XRD showed that the magnetic particles with or without bound cellulase were all nanosized particles with a mean diameter of 11.5 nm, and the binding process did not cause significant changes in particle size and structure. Analysis by FTIR showed that the binding of cellulase to the magnetic nanoparticles might be via covalent bonding between residual amine groups on Fe3O4 nanoparticles and amine groups of the cellulase. The VSM analysis showed that magnetic nanoparticles with or without bound cellulase were all superparamagnetic. The immobilized cellulase had a wider pH and temperature range and improved storage stability compared with the free enzyme. Determination of the Michaelis constants revealed that the immobilized cellulase had a greater affinity for the cellulosic substrate than the free enzyme. The immobilized cellulase showed better performance on hydrolysis of steam-exploded corn stalks than of bleached sulfite bagasse pulp. 相似文献
15.
Chitosan is a widely available, mucoadhesive polymer that is able to increase cellular permeability and improve the bioavailability of orally administered protein drugs. It can also be readily formed into nanoparticles able to entrap drugs or condense plasmid DNA. Studies on the formulation and oral delivery of such chitosan nanoparticles have demonstrated their efficacy in enhancing drug uptake and promoting gene expression. This review summarizes some of these findings and highlights the potential of chitosan as a component of oral delivery systems. 相似文献
16.
Bioferrofluids obtained from carbon coated iron nanoparticles are promising candidates for magnetic drug delivery. The carbon
cages render the particles biocompatible, and provide a good support for drug adsorption. We propose a method in which gold
plated permanent magnets are implanted directly in the affected organ, close to the tumour, by endoscopic techniques. The
bioferrofluid charged with the chemotherapeutic agent is injected and the particles attracted to the magnet, then desorption
of the drug takes place at the tumoral region. This method seems to be more promising, costless and effective than that based
on the application of external magnetic fields. Preliminary results of drug adsorption and a preclinical experimental animal
model are described. 相似文献
17.
18.
Mohammad Reza Saboktakin Abel Maharramov Mohammad Ali Ramazanov 《Carbohydrate polymers》2009,78(2):292-295
Magnetic nanoparticles have been proposed for use as biomedical purposes to a large extent for several years. The development of techniques that could selectively deliver drug molecules to the diseased site, without a concurrent increase in its level in healthy tissues, is currently one of the most active areas of cancer research. The conjugate carboxymethyl starch (CMS)/SPIO nanoparticles were prepared by chemical reaction. Several parameters including the drug/polymer ratios in range of 1:14 were examined to optimize formulation. The size distribution and morphology of nanoparticles and in vitro release profile in phosphate buffer medium (pH 7.4) during 12 h were then investigated. The magnetic NPs prepared in this study were spherical with a relatively mono-dispersed size distribution. The conjugate carboxymethyl starch (CMS)/SPIO nanoparticles were exhaustively studied as controlled-release systems for parenteral administration of a model drug 5-aminosalicyclic acid (mesalamine) and analyzed using various release kinetic studies. 相似文献
19.
A novel gene delivery system targeting urokinase receptor 总被引:2,自引:0,他引:2
Sun XH Tan L Li CY Tong C Fan J Li P Zhu YS 《Acta biochimica et biophysica Sinica》2004,36(7):485-491
Viral vectors are widely used in gene therapy due totheir high efficiency of gene transfer. However, majordisadvantages of viral vectors for gene transfer include thelimitation of cell type specificity and the size of incor-porated DNA, the potential risk… 相似文献
20.
Sara Kamalzare Zahra Noormohammadi Pooneh Rahimi Fatemeh Atyabi Shiva Irani Farnaz Sadat Mirzazadeh Tekie Fatemeh Mottaghitalab 《Journal of cellular physiology》2019,234(11):20554-20565
Gene therapy, including small interfering RNA (siRNA) technology, is one of the leading strategies that help to improve the outcomes of the current therapeutic systems against HIV-1 infection. The successful therapeutic application of siRNAs requires their safe and efficient delivery to specific cells. Here, we introduce a superparamagnetic iron oxide nanoparticle (SPION) for delivering siRNA against HIV-1 nef (anti-nef siRNA) into two cell lines, HEK293 and macrophage RAW 264.7. SPIONs were coated with trimethyl chitosan (TMC), and thereafter, different concentrations of SPION–TMC were coated with different ratios of a carboxymethyl dextran (CMD) to modify the physicochemical properties and improve the biological properties of the nanocarriers. The nanoparticles exhibited a spherical shape with an average size of 112 nm. The obtained results showed that the designed delivery route enhanced the uptake of siRNA into both HEK293 and RAW 264.7 cells compared with control groups. Moreover, CMD–TMC–SPIONs containing anti-nef siRNA significantly reduced the expression of HIV-1 nef in HEK293 stable cells. The modified siRNA-loaded SPIONs also displayed no toxicity or apoptosis-inducing effects on the cells. The CMD–TMC–SPIONs are suggested as potential nanocarriers for siRNA delivery in gene therapy of HIV-1 infection. 相似文献