首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid metabolite that exerts important effects on numerous cellular events via cell surface receptors, S1P(1-5). S1P influences differentiation, proliferation, and migration during vascular development. However, the effects of S1P signaling on early cardiac development are not well understood. To address this issue, we examined the expression of S1P regulatory enzymes and S1P receptors during cardiac development. We observed that enzymes that regulate S1P levels, sphingosine kinase and sphingosine-1-phosphate phosphatase, are expressed in the developing heart. In addition, RT-PCR revealed that four of the five known S1P receptors (S1P(1-4)) are also expressed in the developing heart. Next, effects of altered S1P levels on whole embryo and atrioventricular (AV) canal cultures were investigated. We demonstrate that inactivation of the S1P producing enzyme, sphingosine kinase, leads to cell death in cardiac tissue which is rescued by exogenous S1P treatment. Other experiments reveal that increased S1P concentration prevents alterations in cell morphology that are required for cell migration. This effect results in reduced cell migration and inhibited mesenchymal cell formation in AV canal cushion tissue. These data indicate that S1P, locally maintained within a specific concentration range, is an important and necessary component of early heart development.  相似文献   

2.
Physiological and pathological actions of sphingosine 1-phosphate   总被引:14,自引:0,他引:14  
Sphingosine 1-phosphate (S1P), a product of sphingomyelin (SM) metabolism, occurs widely in nature. Although, originally described as an intracellular second messenger, its role as an extracellular lipid mediator in higher organisms has recently been shown with the discovery of the G protein-coupled receptors (GRCR) for S1P. In mammals, S1P receptors are widely expressed and are thought to regulate important physiological actions, such as immune cell trafficking, vascular development, vascular tone control, cardiac function, and vascular permeability, among others. In addition, S1P may participate in various pathological conditions. For example, S1P has been implicated as an important mediator in autoimmunity, transplant rejection, cancer, angiogenesis, vascular permeability, female infertility, and myocardial infarction. It is important to emphasize that these findings represent an early understanding of the physiological and pathological roles of S1P. The ubiquity of the mediator and its receptors, as well as the evolutionary conservation of S1P metabolism and action, argues that it is a potent and ubiquitous physiological factor in many contexts, and warrant a fuller understanding of its actions at the molecular, cellular and organismal levels.  相似文献   

3.
Sphingosine 1-phosphate (S1P) is a sphingolipid metabolite that regulates diverse biological functions. S1P has been identified as a high-affinity ligand for a family of five G-protein-coupled receptors, known as the S1P receptors. The physiological role of the S1P receptor S1P(1) in vascular maturation was recently revealed by gene disruption in mice. In addition to other cellular processes, the binding of S1P to its receptors regulates motility and directional migration of a variety of cell types, including endothelial cells and vascular smooth muscle cells. This review focuses on the important role of S1P and its receptors in cell migration and describes a new paradigm for receptor cross-communication in which transactivation of S1P(1) by a receptor tyrosine kinase (PDGFR) is crucial for cell motility.  相似文献   

4.
This review discusses multiple effects of sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) on endothelial cells and proposes that S1P and LPA are important regulators of the vascular system. Two physiologic sources of S1P and LPA are platelets and lipoproteins. S1P is an inducer of angiogenesis in vivo whereas LPA is not. S1P and LPA act through endothelial cell surface Edg receptors. S1P stimulates endothelial cell migration, but inhibits migration of most nonendothelial cells. Edg1 and Edg3 receptors, working through G(i), play an important role in regulation of S1P-stimulated endothelial cell migration. LPA effects on endothelial cells are more restricted than the effects of S1P on endothelial cells. LPA stimulates migration of certain endothelial cells on certain extracellular matrix proteins. However, LPA acts like S1P in its effects on the endothelial cell cytoskeleton, proliferation, cell-cell adhesion molecule expression, and vascular permeability. LPA receptors on endothelial cells are likely Edg2 and Edg4. Future studies should better delineate the roles of Edg receptors and downstream pathways on effects of extracellular S1P and LPA and the contributions of intracellularly generated S1P and nitric oxide (NO).  相似文献   

5.
The outs and the ins of sphingosine-1-phosphate in immunity   总被引:1,自引:0,他引:1  
The potent lipid mediator sphingosine-1-phosphate (S1P) is produced inside cells by two closely related kinases, sphingosine kinase 1 (SPHK1) and SPHK2, and has emerged as a crucial regulator of immunity. Many of the actions of S1P in innate and adaptive immunity are mediated by its binding to five G protein-coupled receptors, designated S1PR1-5, but recent findings have also identified important roles for S1P as a second messenger during inflammation. In this Review, we discuss recent advances in our understanding of the roles of S1P receptors and describe the newly identified intracellular targets of S1P that are crucial for immune responses. Finally, we discuss the therapeutic potential of new drugs that target S1P signalling and functions.  相似文献   

6.
Sphingosine 1-phosphate (S1P) is a ligand for S1P family receptors (S1P(1)-S1P(5)). Of these receptors, S1P(1), S1P(2), and S1P(3) are ubiquitously expressed in adult mice, while S1P(4) and S1P(5) are tissue specific. However, little is known of their expression during embryonal development. We performed Northern blot analyses in mouse embryonal tissue and found that such expression is developmentally regulated. We also examined the expression of these receptors during primitive endoderm (PrE) differentiation of mouse F9 embryonal carcinoma (EC) cells, a well-known in vitro endoderm differentiation system. S1P(2) mRNA was abundantly expressed in F9 EC cells, but little S1P(1) and no S1P(3), S1P(4), or S1P(5) mRNA was detectable. However, S1P(1) mRNA expression was induced during EC-to-PrE differentiation. Studies using small interference RNA of S1P(1) indicated that increased S1P(1) expression is required for PrE differentiation. Thus, S1P(1) may play an important function in PrE differentiation that is not substituted for by S1P(2).  相似文献   

7.
Sphingosine-1-phosphate (S1P) is an important regulator of a wide variety of biological processes acting as an endogenous ligand to EDG/S1P receptors. In an effort to establish structure-activity relationship between EDG/S1P and ligands, we report herein homology modeling study of EDG-1/S1P(1), syntheses of S1P analogues, and cell based binding affinity study for EDG/S1P receptors.  相似文献   

8.
Sphingosine-1-phosphate (S1P) receptors mediate transactivation of epidermal growth factor receptor (EGFR) by estrogen (E2). Here we report that the amount of intracellular EGFR remains elevated after stimulation of MCF-7 cells with E2 and S1P, although membrane-localized EGFR and S1P3 receptors are quickly internalized. Co-localization of internalized EGFR and LAMP-2 was lower in cells treated with E2/S1P, suggesting that endosomal EGFR might be directed for recycling instead of degradation. In addition, we found that E2/S1P activated Cdc42 and that knockdown of Cdc42 restores fast EGFR degradation after E2/S1P stimulation. Inhibition of S1P3 receptors prevented E2-induced activation of Cdc42, supporting the important role of the S1P receptor in E2 signaling. This is a novel mechanism further defining the effect of E2/S1P on the EGFR transactivation in breast cancer cells.  相似文献   

9.
Sphingosine 1-phosphate analogs as receptor antagonists   总被引:1,自引:0,他引:1  
Sphingosine 1-phosphate (S1P) is a lysophospholipid mediator that evokes a variety of cell and tissue responses via a set of cell surface receptors. The recent development of S1P receptor agonists, led by the immunomodulatory pro-drug FTY720, has revealed that S1P signaling is an important regulator of lymphocyte trafficking. With the twin goals of understanding structure-activity relationships of S1P ligands and developing tool compounds to explore S1P biology, we synthesized and tested numerous S1P analogs. We report herein that a subset of our aryl amide-containing compounds are antagonists at the S1P(1) and S1P(3) receptors. The lead compound in series, VPC23019, was found in broken cell and whole cell assays to behave as a competitive antagonist at the S1P(1) and S1P(3) receptors. The structure-activity relationship of this series is steep; for example, a slight modification of the lead compound resulted in VPC25239, which was one log order more potent at the S1P(3) receptor. These new chemical entities will enable further understanding of S1P signaling and provide leads for further S1P receptor antagonist development.  相似文献   

10.
Sphingosine 1-phosphate (S1P) is the ligand for a family of specific G protein-coupled receptors (GPCRs) that regulate a wide variety of important cellular functions, including growth, survival, cytoskeletal rearrangements, and cell motility. However, whether it also has an intracellular function is still a matter of great debate. Overexpression of sphingosine kinase type 1, which generated S1P, induced extensive stress fibers and impaired formation of the Src-focal adhesion kinase signaling complex, with consequent aberrant focal adhesion turnover, leading to inhibition of cell locomotion. We have dissected biological responses dependent on intracellular S1P from those that are receptor-mediated by specifically blocking signaling of Galphaq, Galphai, Galpha12/13, and Gbetagamma subunits, the G proteins that S1P receptors (S1PRs) couple to and signal through. We found that intracellular S1P signaled "inside out" through its cell-surface receptors linked to G12/13-mediated stress fiber formation, important for cell motility. Remarkably, cell growth stimulation and suppression of apoptosis by endogenous S1P were independent of GPCRs and inside-out signaling. Using fibroblasts from embryonic mice devoid of functional S1PRs, we also demonstrated that, in contrast to exogenous S1P, intracellular S1P formed by overexpression of sphingosine kinase type 1 promoted growth and survival independent of its GPCRs. Hence, exogenous and intracellularly generated S1Ps affect cell growth and survival by divergent pathways. Our results demonstrate a receptor-independent intracellular function of S1P, reminiscent of its action in yeast cells that lack S1PRs.  相似文献   

11.
The lysophospholipids, sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC), activate diverse groups of G-protein-coupled receptors that are widely expressed and regulate decisive cellular functions. Receptors of the endothelial differentiation gene family are activated by S1P (S1P(1-5)) or LPA (LPA(1-3)); two more distantly related receptors are activated by LPA (LPA(4/5)); the GPR(3/6/12) receptors have a high constitutive activity but are further activated by S1P and/or SPC; and receptors of the OGR1 cluster (OGR1, GPR4, G2A, TDAG8) appear to be activated by SPC, LPC, psychosine and/or protons. G-protein-coupled lysophospholipid receptors regulate cellular Ca(2+) homoeostasis and the cytoskeleton, proliferation and survival, migration and adhesion. They have been implicated in development, regulation of the cardiovascular, immune and nervous systems, inflammation, arteriosclerosis and cancer. The availability of S1P and LPA at their G-protein-coupled receptors is regulated by enzymes that generate or metabolize these lysophospholipids, and localization plays an important role in this process. Besides FTY720, which is phosphorylated by sphingosine kinase-2 and then acts on four of the five S1P receptors of the endothelial differentiation gene family, other compounds have been identified that interact with more ore less selectivity with lysophospholipid receptors.  相似文献   

12.
G protein coupled receptors (GPCRs) form homo- and hetero-dimers or -oligomers, which are functionally important. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophopholipids involved in diverse biological processes. We have examined homo- and hetero-dimerization among three major LPA receptors (LPA(1-3)), three major S1P receptors (S1P(1-3)), as well as OGR1 and GPR4. Using LacZ complementation assays, we have shown that LPA receptors form homo- and hetero-dimers within the LPA receptor subgroup and hetero-dimers with other receptors (S1P(1-3) and GPR4). In addition, we have found that although GPR4 and OGR1 share more than 50% homology, GPR4 forms strong homo- and hetero-dimers with LPA and S1P receptors, but OGR1 forms very weak homo-dimer and relatively weak hetero-dimers with other receptors. Using chimeric receptors between GPR4 and OGR1, we have shown that different domains of GPR4 receptor are involved in its dimerization with different GPCRs and more than one domain may be involved in some of the complex formation. Our results suggest that when studying a signal transduction induced by a stimulus, not only is the expression and activation of its own receptor(s), but also the status of the interacting receptors should be taken into consideration.  相似文献   

13.
Sphingosine-1-phosphate (S1P) is an important bioactive lipid molecule in cell membrane metabolism and binds to G protein-coupled S1P receptors (S1PRs) to regulate embryonic development, physiological homeostasis, and pathogenic processes in various organs. S1PRs are lipid-sensing receptors and are therapeutic targets for drug development, including potential treatment of COVID-19. Herein, we present five cryo-electron microscopy structures of S1PRs bound to diverse drug agonists and the heterotrimeric Gi protein. Our structural and functional assays demonstrate the different binding modes of chemically distinct agonists of S1PRs, reveal the mechanical switch that activates these receptors, and provide a framework for understanding ligand selectivity and G protein coupling.Subject terms: Cryoelectron microscopy, Lipid signalling  相似文献   

14.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that has recently been shown to bind cell surface S1P receptors (previously called endothelial differentiation gene (Edg) receptors), which are members of the G-protein-coupled family of receptors. Signaling via S1P is a complex process, as cells usually express a number of these receptors on their surfaces. Many of the S1P receptors share common G-proteins, invoking the question of how these receptors are specific in their actions. This review describes the coupling pathways of S1P receptors, and highlights the in vitro and in vivo evidence for the "uniqueness" of each receptor in activating downstream signaling pathways, taking the effect of S1P on migration as an example.  相似文献   

15.
The bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) is now recognized as a critical regulator of many physiological and pathophysiological processes, including cancer, atherosclerosis, diabetes and osteoporosis. S1P is produced in cells by two sphingosine kinase isoenzymes, SphK1 and SphK2. Many cells secrete S1P, which can then act in an autocrine or paracrine manner. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. More recently, it was shown that S1P also has important intracellular targets involved in inflammation, cancer and Alzheimer's disease. This suggests that S1P actions are much more complex than previously thought, with important ramifications for development of therapeutics. This review highlights recent advances in our understanding of the mechanisms of action of S1P and its roles in disease.  相似文献   

16.
The biological roles of phospholipid growth factors lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) have been broadly investigated. The cellular effects of LPA and S1P are mediated predominantly via endothelial differentiation gene (EDG) receptors. Yet, the biological significance of LPA, S1P and their EDG receptors in cells of the liver remains unclear. Recent data demonstrate the presence of EDG2 and EDG4 mRNA for LPA receptor in a murine hepatocyte cell line transformed with human TGF-alpha, and in primary mouse hepatocytes. EDG2 receptor protein is expressed in mouse liver, where it appears to be located in nonparenchymal cells. Moreover, we have obtained data suggesting that proliferation of small hepatocyte-progenitors and stem (oval) cells during liver injury is associated with the expression of EDG2 and EDG4 receptors. LPA, and possibly S1P, appear to be essential factors that control proliferation and motility of hepatic stellate cells (HSC) and hepatoma cells. It is proposed that LPA, S1P and their respective EDG receptors play important roles in pathophysiology of chronic liver injury and fibrogenesis. The underlying mechanisms recruited by LPA and S1P in pathogenesis of liver injury remain to be investigated.  相似文献   

17.
The lysophospholipids, sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC), activate diverse groups of G-protein-coupled receptors that are widely expressed and regulate decisive cellular functions. Receptors of the endothelial differentiation gene family are activated by S1P (S1P1-5) or LPA (LPA1-3); two more distantly related receptors are activated by LPA (LPA4/5); the GPR3/6/12 receptors have a high constitutive activity but are further activated by S1P and/or SPC; and receptors of the OGR1 cluster (OGR1, GPR4, G2A, TDAG8) appear to be activated by SPC, LPC, psychosine and/or protons. G-protein-coupled lysophospholipid receptors regulate cellular Ca2+ homoeostasis and the cytoskeleton, proliferation and survival, migration and adhesion. They have been implicated in development, regulation of the cardiovascular, immune and nervous systems, inflammation, arteriosclerosis and cancer. The availability of S1P and LPA at their G-protein-coupled receptors is regulated by enzymes that generate or metabolize these lysophospholipids, and localization plays an important role in this process. Besides FTY720, which is phosphorylated by sphingosine kinase-2 and then acts on four of the five S1P receptors of the endothelial differentiation gene family, other compounds have been identified that interact with more ore less selectivity with lysophospholipid receptors.  相似文献   

18.
Sphingosine-1-phosphate (S1P) receptors are widely expressed in the central nervous system where they are thought to regulate glia cell function. The phosphorylated version of fingolimod/FTY720 (FTY720P) is active on a broad spectrum of S1P receptors and the parent compound is currently in phase III clinical trials for the treatment of multiple sclerosis. Here, we aimed to identify which cell type(s) and S1P receptor(s) of the central nervous system are targeted by FTY720P. Using calcium imaging in mixed cultures from embryonic rat cortex we show that astrocytes are the major cell type responsive to FTY720P in this assay. In enriched astrocyte cultures, we detect expression of S1P1 and S1P3 receptors and demonstrate that FTY720P activates Gi protein-mediated signaling cascades. We also show that FTY720P as well as the S1P1-selective agonist SEW2871 stimulate astrocyte migration. The data indicate that FTY720P exerts its effects on astrocytes predominantly via the activation of S1P1 receptors, whereas S1P signals through both S1P1 and S1P3 receptors. We suggest that this distinct pharmacological profile of FTY720P, compared with S1P, could play a role in the therapeutic effects of FTY720 in multiple sclerosis.  相似文献   

19.
Sphingosine-1-phosphate (S1P) induces an initial Ca(2+)-dependent contraction followed by a sustained Ca(2+)-independent, RhoA-mediated contraction in rabbit gastric smooth muscle cells. The cells coexpress S1P(1) and S1P(2) receptors, but the signaling pathways initiated by each receptor type and the involvement of one or both receptors in contraction are not known. Lentiviral vectors encoding small interfering RNAs were transiently transfected into cultured smooth muscle cells to silence S1P(1) or S1P(2) receptors. Phospholipase C (PLC)-beta activity and Rho kinase activity were used as markers of pathways mediating initial and sustained contraction, respectively. Silencing of S1P(1) receptors abolished S1P-stimulated activation of Galpha(i3) and partially inhibited activation of Galpha(i1), whereas silencing of S1P(2) receptors abolished activation of Galpha(q), Galpha(13), and Galpha(i2) and partially inhibited activation of Galpha(i1). Silencing of S1P(2) but not S1P(1) receptors suppressed S1P-stimulated PLC-beta and Rho kinase activities, implying that both signaling pathways were mediated by S1P(2) receptors. The results obtained by receptor silencing were corroborated by receptor inactivation. The selective S1P(1) receptor agonist SEW2871 did not stimulate PLC-beta or Rho kinase activity or induce initial and sustained contraction; when this agonist was used to protect S1P(1) receptors so as to enable chemical inactivation of S1P(2) receptors, S1P did not elicit contraction, confirming that initial and sustained contraction was mediated by S1P(2) receptors. Thus S1P(1) and S1P(2) receptors are coupled to distinct complements of G proteins. Only S1P(2) receptors activate PLC-beta and Rho kinase and mediate initial and sustained contraction.  相似文献   

20.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite formed by phosphorylation of sphingosine. S1P has been indicated to play a significant role in the cardiovascular system. It has been shown that the enzymes for S1P metabolism are expressed in the kidneys. The present study characterized the expression of S1P receptors in the kidneys and determined the role of S1P in the control of renal hemodynamics and sodium excretion. Real-time RT-PCR analyses showed that S1P receptors S1P1, S1P2, and S1P3 were most abundantly expressed in the renal medulla. Immunohistochemistry revealed that all three types of S1P receptors were mainly located in collecting ducts. Intramedullary infusion of FTY720, an S1P agonist, produced a dramatic increase in sodium excretion by twofold and a small but significant increase in medullary blood flow (16%). Administration of W146, an S1P1 antagonist, into the renal medulla blocked the effect of FTY720 and decreased the sodium excretion by 37% when infused alone. The antagonists of S1P2 and S1P3 had no effect. FTY720 produced additive natriuretic effects in combination with different sodium transporter inhibitors except amiloride, an epithelial sodium channel blocker. In the presence of nitric oxide synthase inhibitor l-NAME, FTY720 still increased sodium excretion. These data suggest that S1P produces natriuretic effects via activation of S1P1 in the renal medulla and this natriuretic effect may be through inhibition of epithelial sodium channel, which is nitric oxide independent. It is concluded that S1P is a novel diuretic factor in the renal medulla and may be an important regulator of sodium homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号