首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An improved system for polyacrylamide gel electrophoresis in the presence of cationic detergents, cetyltrimethylammonium bromide and cetylpyridinium chloride, respectively, is described. An acidic discontinuous buffer system generated according to the theory of multiphasic zone electrophoresis developed by T. M. Jovin (1973, Biochemistry 12, 871-904) was used. It was optimized with respect to the operational conditions and to the desirable range of relative mobility values for the proteins that have molecular weights from 16,500 to 90,300. Also presented is a procedure for the elimination of interference from cationic detergents frequently encountered during staining of gels. The electrophoretic system was suitable for fractionating a wide variety of proteins. The technique can also be used to provide an alternative estimate of molecular weight. To fully account for accurate estimations, the Ferguson relationship between mobility and gel concentration and the relation of molecular weight to mobility at a single gel concentration were both considered. Examples reported in this paper include the separation and/or molecular weight determination of several common proteins, histones, and microfibrillar and myofibrillar proteins. The results suggest that electrophoresis in the presence of cationic detergents offers the same degree of reliability in analysis of most proteins as is provided by the anionic detergent sodium dodecyl sulfate electrophoresis.  相似文献   

2.
Polyacrylamide gel electrophoresis in the presence of a cationic detergent, tetradecyltrimethylammonium bromide (TDAB) has been compared to electrophoresis in the presence of an anionic detergent, sodium dodecyl sulfate (SDS). Although, in both systems, the peptides generally migrated as a function of their molecular weight, the TDAB electrophoresis permitted us to obtain a much better resolution of several peptides of the mitochondrial F0-F1-ATPase, especially for the alpha and beta subunits and for the oligomycin sensitivity conferring protein (OSCP). The differences between the two electrophoretic profiles have been used to devise a new technique of two-dimensional electrophoresis using successively anionic and cationic detergents. This method could be very useful in the case of membrane proteins, which are generally soluble only in the presence of powerful ionic detergents. It has been particularly successful in resolving the small peptides of the F0-F1-ATPase which were difficult to differentiate by other techniques in one- or two-dimensional polyacrylamide gel electrophoresis.  相似文献   

3.
Purification and preliminary characterization of human leukocyte elastasel.   总被引:1,自引:0,他引:1  
Affinity chromatography permits the purification of 1–3 mg of human leukocyte elastase from the leukocytes contained in 500 ml of whole blood. Lysosomal granule proteins are extracted from polymorphonuclear leukocytes and subjected to chromatography on a column of elastin-Sepharose. Contaminating proteins are eluted with buffer containing 1 m NaCl and then elastase activity is eluted with buffer containing 8 m urea. The enzyme retains all of its esterase activity against N-t-BOC-l-alanine p-nitrophenyl ester after exposure to 8 m urea and retains 22% of its activity in the presence of 1% sodium dodecyl sulfate. In sodium dodecyl sulfate and 2-mercaptoethanol leukocyte elastase undergoes autolysis giving rise to several low molecular weight fragments. The molecular weight of the native enzyme is found to be 22.000 by both gel filtration and sodium dodecyl sulfate—acrylamide gel electrophoresis. A characteristic set of four isozymes is seen after acrylamide disc gel electrophoresis at pH 4.5. All bands are active against elastin and also contain carbohydrate by the periodic acid-Schiff stain. On the basis of stain intensity, the slower moving isozymes appear to be richest in carbohydrate. Active leukocyte elastase forms a complex with α1-antitrypsin in a 1:1 molar ratio. The elastase must be enzymatically active for complex formation to occur.  相似文献   

4.
Low molecular weight trypsin inhibitors were purified from swine colostrum on a large scale under mild conditions. Ammonium sulfate fractionation and metal chelate chromatography on zinc chelate Sepharose and phenyl Sepharose were used for removal of the bulk of proteins. The inhibitors showed only a weak hydrophobic interaction with phenyl Sepharose even in the presence of 1 M (Nll4)2SO4, and advantage was taken of this property to remove the inhibitors from contaminating colostrum proteins which remained tightly adsorbed to phenyl Sepharose under these conditions. The low and high molecular weight inhibitors were then separated by gel filtration on Bio-Gel P-300. The low molecular weight material was eluted in three major inhibitor fractions on DEAE-Sepharose.

Chromatofocusing of these fractions provided greater resolution of the inhibitors, and several previously unreported inhibitor peaks were detected. The six major inhibitors purified by chromatofocusing were homogeneous as judged by polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. These inhibitors were composed of a single polypeptide chain with a molecular weight of 18,000 as determined by Sephacryl S-200 gel filtration and polyacrylamide qel electrophoresis in the presence of sodium dodecyl sulfate and e-mercaptoethanol. The specific activities of the pure inhibitors were approximately 30% higher than those previously reported.  相似文献   

5.
Two-dimensional gel electrophoresis (2D)1 is a powerful technique used to separate complex protein mixtures. The technique involves the separation of proteins by charge in the first dimension and by molecular weight in the second dimension. The effect of substituting various detergents for sodium dodecyl sulfate (SDS) in the second dimension (PAGE) was investigated. Individual C-10 through C-14 alkyl sulfates, C-11 through C-14 alkyl sulfonates, sodium N-lauroyl-N-methyl-taurine, N-lauroylsarcosine, sodium laurate, or benzyldimethyl-n-hexadecylammonium chloride were substituted for SDS in equilibration buffer, gel buffer, and upper running buffer. The cationic benzyldimethyl-n-hexadecylammonium chloride system was run with reversed polarity. Dramatic effects on protein migration from human mesothelial cell extracts were observed when different detergents were utilized. The C-12 (SDS) through C-14 alkyl sulfates and sulfonates resulted in anomalous migration of the simple epithelial keratins. Unlike SDS, the C-10 and C-11 alkyl sulfates and C-11 sulfonate resulted in gels in which the keratins were separated accurately with respect to their gene sequence-determined molecular weights. However, with these shorter chain alkyl sulfates and sulfonate, resolution was compromised, especially with respect to the high-molecular-weight polypeptides. The C-12 alkyl sulfate (SDS) and alkyl sulfonate provided the best resolution of polypeptides. Mixtures of C-11 sulfate and SDS resulted in gels with better sequence molecular weight estimates and high resolution. In addition, trace amounts of sodium tetradecyl sulfate/sodium heptadecyl sulfate in commercial SDS preparations had an effect on polypeptide resolution.  相似文献   

6.
Purine nucleoside phosphorylase (PNP) was purified from rat hepatoma cells and normal liver tissue utilizing the techniques of ammonium sulfate fractionation, heat treatment, ion-exchange and molecular exclusion chromatography, and polyacrylamide gel electrophoresis. Homogeneity was established by disc gel electrophoresis in the presence and absence of sodium dodecyl sulfate. Purified rat hepatoma and liver PNPs appeared to be identical with respect to subunit and native molecular weight, substrate specificity, heat stability, kinetics and antigenic identity. A native molecular weight of 84,000 was determined by gel filtration. A subunit molecular weight of 29,000 was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A single isoelectric point was observed at pH 5.8, and the pH optimum was 7.5. Inosine, guanosine, xanthosine, and 6-mercaptopurine riboside were substrates for the enzymes. The apparent Km for both inosine and guanosine was about 1.0 × 10?4m and for phosphate was 4.2 × 10?4m. Hepatoma and liver PNP showed complete cross-reactivity using antiserum prepared against the liver enzyme.  相似文献   

7.
8.
Criteria for assessing the precision and accuracy of methods for estimation of molecular weight for proteins using sodium dodecyl sulfate-polyacrylamide-gel electrophoresis have been applied to rhodopsin from bovine visual cell outer segment membranes. Various methods of preparing this hydrophobic protein for electrophoresis differ in their ability to solubilize and disaggregate polypeptide constituents of the outer segment membrane, with resultant variations in the pattern of protein bands and the apparent molecular weight of rhodopsin. Even with optimal solubilization and disaggregation, the behavior of rhodopsin relative to a series of standard proteins is such that the apparent molecular weight decreases systematically from 40,400 to 34,500 as the acrylamide concentration increases from 4 to 10%. As demonstrated by Ferguson plots of logRf vs gel concentration and split gel experiments, this discrepancy is explained by the fact that the extrapolated Rf for zero gel concentration (Y0) for rhodopsin is significantly lower than the Y0's for the soluble proteins used as molecular weight standards. In such cases, a possibly more reliable molecular weight estimate is obtained by plotting the retardation coefficient (KR) vs molecular weight. This method yields a value of 29,500 ± 1000 for bovine rhodopsin if only the errors in measurement of Rf are considered and a quadratic relationship between KR and molecular weight is used. Using weighted linear regression for KR vs molecular weight, we obtain a molecular weight estimate of 32,700 ± 5000 when the uncertainty in the calibration curve is considered. Because of uncertainties regarding the detergent-binding properties of rhodopsin and the relationship of its Stokes radius to its molecular weight by comparison with the soluble protein standards, these values must be viewed with caution.  相似文献   

9.
Creatine amidinohydrolase (EC 3.5.3.3, creatinase) of Pseudomonas putida var. naraensis C-83 was purified by column chromatography on sarcosine-hexamethylenediamine-Sepharose and Sephadex G-200 and then crystallized in the presence of ammonium sulfate. The purified preparation appeared homogeneous on disc gel electrophoresis and ultracentrifugal analysis. It was most active at pH 8 and showed a Km value of 1.33 mm for creatine. Estimation of the molecular weight by the meniscus depletion method yielded a value of 94,000. A value of 47,000 was obtained, however, by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, suggesting that the enzyme is composed of two subunits. Inhibition experiments suggested that a sulfhydryl group is closely related to the creatinase activity.  相似文献   

10.
Human erythrocyte membrane proteins and glycoproteins were visualized after separation by sodium dodecyl sulfate polyacrylamide gels into molecular weight classes using a single staining procedure with a cationic carbocyanine dye (“Stains-all”). The sialoglycoproteins stained blue; the proteins, red; and the lipids, yellow-orange. This method is useful in detecting simultaneously the position of proteins and sialoglycoproteins in the commonly used SDS polyacrylamide gel electrophoresis.  相似文献   

11.
A method of separating envelope proteins by two-dimensional polyacrylamide gel electrophoresis is described. Escherichia coli envelopes (inner and outer membranes) were prepared by French pressing and washed by repeated centrifugation. Membrane proteins were solubilized with guanidine thiocyanate and were dialyzed against urea prior to two-dimensional electrophoretic analysis. The slab gel apparatus and conditions were similar to the technique developed by Metz and Bogorad (1974) for the separation of ribosomal proteins. This separation occurs in 8 M urea for the first dimension and in 0.2% sodium dodecyl sulfate for the second dimension. The technique separates about 70 different membrane proteins in a highly reproducible fashion according to both intrinsic charge and molecular weight. Some examples of alterations in the membrane protein pattern are demonstrated. These alterations are caused by a mutation affecting a sugar transport system and by growth in the presence of D-fucose, inducer of the transport system. A further example of membrane protein changes introduced by growth at the nonpermissive temperature of a temperature-sensitive cell division mutant is shown. Finally, it is demonstrated that the major outer membrane component of Escherichia coli K-12 contains more than four proteins of similar molecular weight.  相似文献   

12.
Pore gradient electrophoresis (PGE) in the presence of sodium dodecyl sulfate (SDS) provides a means for high resolution fractionation of multicomponent protein systems and permits estimation of molecular weights for macromolecules ranging from 103 to 106. We have evaluated the performance of several methods used to construct calibration curves for estimation of molecular weights using SDS-PGE. A linear relationship between the logarithm of molecular weight, log (Mr), and the logarithm of the relative mobility, log (Rl), can be obtained for a 30-fold range of molecular weights. However, this range of linearity depends on the choice of the concentration gradient, the degree of crosslinking of the gel, and on the nature of the underlying relationship between the retardation coefficient, KR, and the molecular weight. An empirical relationship, first introduced by Lambin et al. (1976, Anal. Biochem.74, 567) between log (Mr) and the logarithm of the gel concentration at the position reached by the protein, log (%T), provides better linearity over a wider molecular weight range than does the use of log (Rl). We have compared these relatienships by experimental analysis of 10 standard proteins and by a theoretical analysis of an idealized model system. A computer program has been developed which provides appropriate statistical estimation of the molecular weight for an unknown protein, together with its standard error and 95% confidence limits. A new method has also been developed for analysis of nonlinear calibration curves in terms of molecular weight versus distance migrated, based on a theoretically justifiable, physical-chemical model. This model implies that either the relationship between log (Mr) and log (Rl) or the one between log (Mr) and log (%T) will become nonlinear as the range of molecular weight is extended. We suggest that the use of a nonlinear least-squares curve-fitting procedure provides an optimal method for molecular weight estimation when sufficient data are available. Based on these findings, a general strategy is presented for estimation of molecular weights by polyacrylamide gel electrophoresis.  相似文献   

13.
The polypeptide composition of a Photosystem II (PS II) core complex from higher plant chloroplasts has been characterized by subjecting the isolated complex to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two polypeptides in the 40–50 kDa size class, attributed to the chlorophyll a-binding apoproteins of PS II, were resolved when the urea concentration in the SDS-polyacrylamide gel electrophoresis was greater than 1 M. The two chlorophyll a-binding proteins were dissimilar in their primary structure based upon their different hydrolysis products on SDS-polyacrylamide gel electrophoresis following papain treatment. The core complex contained three additional polypeptides. Two polypeptides in the 30–34 kDa size class were resolved when the urea concentration in the gel system was increased to greater than 4 M. One of the polypeptides in this size class was identified as the herbicide-binding protein from azido[14C]atrazine labeling studies. The herbicide-binding protein displayed an anomalous electrophoretic migration behavior in SDS-polyacrylamide gel electrophoresis in the presence or absence of urea; its apparent molecular weight decreased when the urea concentration increased. The fifth protein component of the core complex was attributed to cytochrome b-559 which was found to consist of the ascorbate- and dithionite-reducible forms in the samples prior to SDS solubilization.  相似文献   

14.
Purification and Properties of Arginase from Soybean, Glycine max, Axes   总被引:3,自引:2,他引:1  
Kang JH  Cho YD 《Plant physiology》1990,93(3):1230-1234
Arginase (EC 3.5.3.1) was purified to homogeneity from cytosol of soybean, Glycine max, axes by chromatographic separations on Sephadex G-200, DEAE-sephacel, hydroxyapatite, and arginine-affinity columns. The molecular weight of the enzyme estimated by pore gradient gel electrophoresis was 240,000, while sodium dodecyl sulfate polyacrylamide gel electrophoresis gave a single band at the molecular weight of 60,000. The optimal pH for activity was 9.5 and the Km value was 83 millimolar. The enzyme was stimulated by polyamines such as putrescine.  相似文献   

15.
Some envelope proteins of Escherichia coli show variable behavior in acrylamide gel electrophoresis in 1% sodium dodecyl sulfate, depending upon the conditions of the solubilization. When solubilized in 1% sodium dodecyl sulfate at 70 C for 20 min, three distinct peaks (peaks 4, 6, and 7) are seen at molecular weights of 57,800, 44,300, and 38,400, respectively. However, when the envelope fractions are solubilized in 1% sodium dodecyl sulfate at 100 C for 5 min, or when they are treated with N, N-dimethylformamide at acidic pH before solubilization by our method, only a single peak at 48,000 molecular weight is observed in the molecular weight range mentioned above. That is, peaks 4 and 7 disappear and a new peak appears at the position overlapping with peak 6. Proteins isolated from peaks 4 and 7 show the similar molecular weight shifts to the new peak by the treatment at 100 C. No other peaks show any change by the heat treatment. The increase at the new peak is completely accounted for by the decrease at peaks 4 and 7, indicating that the new peak is composed of proteins from peaks 4, 6, and 7. However, it is concluded that these three peaks consist of distinctly different proteins for the following reasons: (i) they have different amino acid compositions, (ii) they show different solubilities in the nonionic detergent, Nonidet P-40, and as shown previously, (iii) peak 6 (protein Y) is related to deoxyribonucleic acid synthesis, and (iv) proteins in peaks 4, 6, and 7 have different resistance to proteolytic enzymes. Although the reasons for the anomalous molecular weight shifts of these peaks are not well understood at present, it is important to solubilize the E. coli envelope proteins by the standard method in order to investigate their properties and functions of the envelope proteins.  相似文献   

16.
S Acker  A Picaud  J Duranton 《BBA》1976,440(2):269-277
Photosynthetic activity in the absence of the CP1 and CP2 pigmentary complexesVarious photochemical activities were tested on chloroplasts of Zea mays that received 4 s of light every 4 h during the culture period. Photosystem I and Photosystem II were functioning, as well as the photosynthetic electron transport. These chloroplasts exhibited upon sodium dodecyl sulphate gel electrophoresis neither Complex 1 (Mr 70 000) generally associated with Photosystem I nor Complex 2 Mr 25 000) generally associated with Photosystem II. Chlorophyll is indeed attached to polypeptides of molecular weight 21 000 and 29 000.These results lead us to question the functional role of chloroplast protein-pigment complexes observed by sodium dodecyl sulphate gel electrophoresis.  相似文献   

17.
Basic nuclear proteins from the wall-less dinoflagellate Gymnodinium nelsoni were analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). One major histone-like protein with a molecular weight of about 10 000 was present in acid extracts of whole nuclei and chromatin isolated from growing cultures. In addition, two minor components of 17 000 and 13 000 daltons were also noted. Chromatin fibers spread by the microcentrifugation technique showed no indication of a subunit structure, but instead appeared as smooth threads with a diameter of about 6.5 nm.  相似文献   

18.
Wissing J  Heim S  Wagner KG 《Plant physiology》1989,90(4):1546-1551
Diacylglycerol kinase (ATP:1,2-diacylglycerol 3-phosphotransferase, EC 2.7.1.107) from suspension-cultured Catharanthus roseus cells was extracted from a membrane fraction with 0.6% Triton X-100 and 150 millimolar NaCl and was purified about 900-fold by DEAE-cellulose, blue Sepharose, gel permeation, and phenyl-Sepharose chromatography. The enzyme is obviously membrane bound as activity in the cytosol could not be detected. In the presence of detergents such as Triton X-100 (3-[3-cholamidopropyl]dimethylamino)-1-propanesulfonate (Chaps), or deoxycholate, a molecular weight of about 250,000 was determined by gel filtration. In glycerol density gradients, the enzyme sedimented slightly more slowly than bovine serum albumin, indicating a molecular weight of less than 68,000. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis enzyme activity could be assigned to a protein of 51,000 daltons. As found previously for bacterial and animal diacylglycerol kinases, the purified enzyme was completely devoid of activity without the addition of phospholipids or deoxycholate. Cardiolipin was found to be most effective, whereas higher amounts of detergent were inhibitory. The enzyme needs divalent cations for activity, with Mg2+ ions being the most effective. Apparent Km values for ATP and diacylglycerol were determined as 100 and 250 micromolar, respectively.  相似文献   

19.
A coenzyme B12-dependent glycerol dehydratase from Lactobacillus reuteri has been purified and characterized. The dehydratase has a molecular weight of approximately 200,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis yielded a single major band with a molecular weight of 52,000. Km values for substrates and coenzyme B12 were in the millimolar and the submicromolar range, respectively.  相似文献   

20.
Purification and Properties of Clostridium botulinum Type F Toxin   总被引:9,自引:2,他引:7       下载免费PDF全文
Clostridium botulinum type F toxin of proteolytic Langeland strain was purified. Toxin in whole cultures was precipitated with (NH4)2SO4. Extract of the precipitate was successively chromatographed on diethylaminoethyl-cellulose at pH 6.0, O-(carboxymethyl) cellulose at pH 4.9, Sephadex G-200 at pH 8.1, quaternary aminoethyl-Sephadex at pH 4.9, and finally diethylaminoethyl-cellulose at pH 8.1. The procedure recovered 14% of the toxin assayed in the starting culture. The toxin was homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, double gel diffusion serology, and isoelectric focusing. Purified toxin had a molecular weight of 150,000 by gel filtration and 155,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Specific toxicity was 9.6 × 106 mean lethal doses per absorbancy (278 nm) unit. Sub-units of 105,000 and 56,000 molecular weight are found when purified toxin is treated with a disulfide reducing agent and electrophoresed on sodium dodecyl sulfate-polyacrylamide gels. Reciprocal cross neutralizations were demonstrated when purified type F and E toxins were reacted with antitoxins which were obtained with immunizing toxoids prepared with purified toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号