首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
While the expression patterns of segment polarity genes such as engrailed have been shown to be similar in Drosophila melanogaster and Schistocerca americana (grasshopper), the expression patterns of pair-rule genes such as even-skipped are not conserved between these species. This might suggest that the factors upstream of pair-rule gene expression are not conserved across insect species. We find that, despite this, many aspects of the expression of the Drosophila gap gene hunchback are shared with its orthologs in the grasshoppers S. americana and L. migratoria. We have analyzed both mRNA and protein expression during development, and find that the grasshopper hunchback orthologs appear to have a conserved role in early axial patterning of the germ anlagen and in the specification of gnathal and thoracic primordia. In addition, distinct stepped expression levels of hunchback in the gnathal/thoracic domains suggest that grasshopper hunchback may act in a concentration-dependent fashion (as in Drosophila), although morphogenetic activity is not set up by diffusion to form a smooth gradient. Axial patterning functions appear to be performed entirely by zygotic hunchback, a fundamental difference from Drosophila in which maternal and zygotic hunchback play redundant roles. In grasshoppers, maternal hunchback activity is provided uniformly to the embryo as protein and, we suggest, serves a distinct role in distinguishing embryonic from extra-embryonic cells along the anteroposterior axis from the outset of development - a distinction made in Drosophila along the dorsoventral axis later in development. Later hunchback expression in the abdominal segments is conserved, as are patterns in the nervous system, and in both Drosophila and grasshopper, hunchback is expressed in a subset of extra-embryonic cells. Thus, while the expected domains of hunchback expression are conserved in Schistocerca, we have found surprising and fundamental differences in axial patterning, and have identified a previously unreported domain of expression in Drosophila that suggests conservation of a function in extra-embryonic patterning.  相似文献   

2.
Chelicerates represent a basal arthropod group, which makes them an excellent system for the study of evolutionary processes in arthropods. To enable functional studies in chelicerates, we developed a double-stranded RNA-interference (RNAi) protocol for spiders while studying the function of the Distal-less gene. We isolated the Distal-less gene from the spider Cupiennius salei. Cs-Dll gene expression is first seen in cells of the prosomal segments before the outgrowth of the appendages. After the appendages have formed, Cs-Dll is expressed in the distal portion of the prosomal appendages, and in addition, in the labrum, in two pairs of opisthosmal (abdominal) limb buds, in the head region, and at the posterior-most end of the spider embryo. In embryos, in which Dll was silenced by RNAi, the distal part of the prosomal appendages was missing and the labrum was completely absent. Thus, Dll also plays a crucial role in labrum formation. However, the complete lack of labrum in RNAi embryos may point to a different nature of the labrum from the segmental appendages. Our data show that the expression of Dll in the appendages is conserved among arthropods, and furthermore that the role of Dll is evolutionarily conserved in the formation of segmental appendages in arthropods.  相似文献   

3.
Due to their biocompatibility, biodegradability, and low immunogenicity, recombinant spider silk proteins have a high potential for a variety of applications when processed into morphologies such as films, capsules, beads, or hydrogels. Here, hydrogels made of the engineered and recombinantly produced spider silk protein eADF4(C16) were analyzed in detail. It has previously been shown that eADF4(C16) nanofibrils self-assemble by a mechanism of nucleation-aggregation, providing the basis of silk hydrogels. We focused on establishing a reproducible gelation process by employing different protein concentrations, chemical crosslinking, and functionalization of eADF4(C16) with fluorescein. Fluorescein strongly influenced assembly as well as the properties of the hydrogels, such as pore sizes and mechanical behavior, possibly due to its interference with packing of silk nanofibrils during hydrogel formation.  相似文献   

4.
Although the development of the digestive system of humans and vertebrate model organisms has been well characterized, relatively little is known about how the zebrafish digestive system forms. We define developmental milestones during organogenesis of the zebrafish digestive tract, liver, and pancreas and identify important differences in the way the digestive endoderm of zebrafish and amniotes is organized. Such differences account for the finding that the zebrafish digestive system is assembled from individual organ anlagen, whereas the digestive anlagen of amniotes arise from a primitive gut tube. Despite differences of organ morphogenesis, conserved molecular programs regulate pharynx, esophagus, liver, and pancreas development in teleosts and mammals. Specifically, we show that zebrafish faust/gata-5 is a functional ortholog of gata-4, a gene that is essential for the formation of the mammalian and avian foregut. Further, extraembryonic gata activity is required for this function in zebrafish as has been shown in other vertebrates. We also show that a loss-of-function mutation that perturbs sonic hedgehog causes defects in the development of the esophagus that parallel those associated with targeted disruption of this gene in mammals. Perturbation of sonic hedgehog also affects zebrafish liver and pancreas development, and these effects occur in a reciprocal fashion, as has been described during mammalian liver and ventral pancreas development. Together, these data define aspects of digestive system development necessary for the characterization of zebrafish mutants. Given the similarities of teleost and mammalian digestive physiology and anatomy, these findings have implications for developmental and evolutionary studies as well as research of human diseases, such as diabetes, liver cirrhosis, and cancer.  相似文献   

5.
Ras opposite (Rop) is known to play an essential role in regulating vesicle trafficking, including synaptic transmission and general secretion. The fundamental roles of Rop have been confirmed by the observation that null mutations in many organisms generate lethal phenotypes during embryogenesis. However, the effects of Rop during the postembryonic stages, especially in non-model organisms, remain largely unknown. Here, we provide new data that enhance our understanding of Rop's roles in the adults of multiple species of Tetranychus spider mites (Acari: Tetranychidae), a class of notorious agricultural pests. Our in silico and experimental evidence demonstrated that Rop is under purifying selection and is highly conserved in Tetranychus spp. RNA interference experiments showed that Rop is required for maintaining normal fecundity but has no significant effect on survival. We further demonstrate that knockdown of Rop darkens the body color of spider mites and blocks the excretion of fecal pellets, which is likely to be related to an abnormality in the excretion of food waste in the digestive system. Overall, our findings clarify novel functions of a vesicle trafficking-related gene in the adult stage of multiple Tetranychus species and highlight the need to evaluate the roles of essential genes in various organisms.  相似文献   

6.
7.
8.
9.
Hedgehog signaling plays a conserved role in inhibiting fat formation   总被引:1,自引:0,他引:1  
  相似文献   

10.
The axial midline is an important source of patterning and morphogenesis cues in the vertebrate embryo. The midline derives from a small group of cells in the gastrulating embryo, known as "the organizer" in recognition of its ability to organize an entire body plan. The mammalian organizer, the node, gives rise to axial midline structures: the notochord, dorsal foregut, and part of the floor plate of the neural tube. Only some of the genes that direct midline development are known. In this study, we present the complete coding sequence for a novel gene, cordon-bleu (cobl), expressed specifically in the node and its derivatives until organogenesis stages. The deduced sequence does not resemble any gene of known function. However, cobl is widely conserved: apparent orthologs and paralogs are found in many vertebrate species, with several sequence domains of high conservation but unknown function. We find that chicken cordon-bleu is similarly expressed in the node and its derivatives, suggesting functional conservation. We also report the sequence and nonoverlapping expression of a related mouse gene, Coblr1. Finally, we show that cobl interacts with the neurulation gene Vangl2 to facilitate midbrain neural tube closure, demonstrating roles for both cobl and Vangl2 in midbrain neurulation.  相似文献   

11.
McKay RM  McKay JP  Suh JM  Avery L  Graff JM 《EMBO reports》2007,8(12):1183-1189
Tripeptidyl peptidase II (TPPII) is a multifunctional and evolutionarily conserved protease. In the mammalian hypothalamus, TPPII has a proposed anti-satiety role affected by degradation of the satiety hormone cholecystokinin 8. Here, we show that TPPII also regulates the metabolic homoeostasis of Caenorhabditis elegans; TPPII RNA interference (RNAi) decreases worm fat stores. However, this occurs independently of feeding behaviour and seems to be a function within fat-storing tissues. In mammalian cell culture, TPPII stimulates adipogenesis and TPPII RNAi blocks adipogenesis. The pro-adipogenic action of TPPII seems to be independent of protease function, as catalytically inactive TPPII also increases adipogenesis. Mice that were homozygous for an insertion in the Tpp2 locus were embryonic lethal. However, Tpp2 heterozygous mutants were lean compared with wild-type littermates, although food intake was normal. These findings indicate that TPPII has central and peripheral roles in regulating metabolism and that TPPII actions in fat-storing tissues might be an ancient function carried out in a protease-independent manner.  相似文献   

12.
Spider silk fibroins can adopt different structural states at high protein concentrations. They are soluble within the spinning dope of the glands, but readily converted into insoluble polymers upon extrusion. A contribution of the C-termini to the maintenance and conversion of these states is suggested by their predicted secondary structures and biochemical behavior in vitro. Special sequence parts endow the C-termini with the capability to promote both the solubility and aggregation of the fibroins depending on the environmental conditions.  相似文献   

13.
14.
The asymmetric distribution of phospholipids in membranes is a fundamental principle of cellular compartmentalization and organization. Phosphatidylethanolamine (PE), a nonbilayer phospholipid that contributes to organelle shape and function, is synthesized at several subcellular localizations via semiredundant pathways. Previously, we demonstrated in budding yeast that the PE synthase Psd1, which primarily operates on the mitochondrial inner membrane, is additionally targeted to the ER. While ER-localized Psd1 is required to support cellular growth in the absence of redundant pathways, its physiological function is unclear. We now demonstrate that ER-localized Psd1 sublocalizes on the ER to lipid droplet (LD) attachment sites and show it is specifically required for normal LD formation. We also find that the role of phosphatidylserine decarboxylase (PSD) enzymes in LD formation is conserved in other organisms. Thus we have identified PSD enzymes as novel regulators of LDs and demonstrate that both mitochondria and LDs in yeast are organized and shaped by the spatial positioning of a single PE synthesis enzyme.  相似文献   

15.
There has been much excitement about the possibility that exposure to specific environments can induce an ecological memory in the form of whole-sale, genome-wide epigenetic changes that are maintained over many generations. In the model plant Arabidopsis thaliana, numerous heritable DNA methylation differences have been identified in greenhouse-grown isogenic lines, but it remains unknown how natural, highly variable environments affect the rate and spectrum of such changes. Here we present detailed methylome analyses in a geographically dispersed A. thaliana population that constitutes a collection of near-isogenic lines, diverged for at least a century from a common ancestor. Methylome variation largely reflected genetic distance, and was in many aspects similar to that of lines raised in uniform conditions. Thus, even when plants are grown in varying and diverse natural sites, genome-wide epigenetic variation accumulates mostly in a clock-like manner, and epigenetic divergence thus parallels the pattern of genome-wide DNA sequence divergence.  相似文献   

16.
17.
Caveolae are abundant cell-surface organelles involved in lipid regulation and endocytosis. We used comparative proteomics to identify PTRF (also called Cav-p60, Cavin) as a putative caveolar coat protein. PTRF-Cavin selectively associates with mature caveolae at the plasma membrane but not Golgi-localized caveolin. In prostate cancer PC3 cells, and during development of zebrafish notochord, lack of PTRF-Cavin expression correlates with lack of caveolae, and caveolin resides on flat plasma membrane. Expression of PTRF-Cavin in PC3 cells is sufficient to cause formation of caveolae. Knockdown of PTRF-Cavin reduces caveolae density, both in mammalian cells and in the zebrafish. Caveolin remains on the plasma membrane in PTRF-Cavin knockdown cells but exhibits increased lateral mobility and accelerated lysosomal degradation. We conclude that PTRF-Cavin is required for caveola formation and sequestration of mobile caveolin into immobile caveolae.  相似文献   

18.
Behavioral analysis of near-isogenic dicofol-resistant and dicofol-susceptible spider mites did not uncover behavior patterns, present in resistant individuals yet absent in susceptible individuals, that would have reduced exposure to dicofol. On the contrary, homozygous resistant individuals were more likely than homozygous susceptible individuals to remain in contact with treated leaf areas. In the case of dicofol resistance in twospotted spider mites, resistance appears to have resulted in the loss, rather than the acquisition, of behavioral traits that lessen exposure to pesticide. Therefore, we conclude that behavioral resistance does not play a major role in twospotted spider mite resistance to dicofol.Deux génotypes de T. urticae Koch (un sensible et un résistant) ont servi à étudier les aspects comportementaux de la résistance aux pesticides: la durée et la fréquence des comportements de nutrition, de marche et d'attente ont été mesurés chez cet acarien. Dans toutes les expériences, des femelles de mêmes âges avaient été placées sur des feuilles jeunes de haricot (Phaseolus vulgaris) portant des résidus de dicofol.3 séries d'expériences ont été réalisées pour examiner:
1)  Comment l'âge du résidu affecte le comportement? 24 ou 48 heures après avoir enduit uniformément les feuilles de résidus de dicofol par trempage dans une solution à 100 ppm, un acarien était placé sur un disque de feuille et observé pendant une heure; les disques témoins sans résidu avaient été trempés dans l'eau;
2)  Comment se comportent les acariens sur des disques de feuilles de 35 mm de diamètre recouverts d'une couche discontinue (formée par des carrés de 0,7 cm de côté disposés en damier) de résidu? Les carrés traités ont reçu 2 ml d'une solution à 100 ppm de dicofol sous pression exercée par un vaporisateur Potter. Chaque acarien a été observé pendant une heure;
3)  Quel est l'effet à long terme des résidus? La position des acariens a été examinée 48 heures après qu'ils aient été placés sur des feuilles avec résidus discontinus de 24 heures.
  相似文献   

19.
The excretory duct of pyriform glands in Araneus diadematus is connected to the secretory sac through an intermediary cell ring. Apices of these cells bear thick, long microvilli and cytoplasmic extensions containing microtubules in bundles, some of which are derived from normal basal bodies. These finger-like extensions lie between the cuticular intima and the secretory product; they are thought to protect the intima and to initiate moulding of the silk thread. Structural features of the duct cells suggest that the latter play a role in the control of the water content of the silk glue which is restricted to the last portion of the duct where numerous nerve endings are inserted between cells. It is evident that duct structure and chemical and physical characteristics of silk are correlated in all spider silk glands.  相似文献   

20.
The morphology of the fibers formed by recombinant analogs of dragline spider silk proteins, spidroins 1 and 2, was studied. It has been shown that the extension of the initial fiber, the so-called as-spun fiber, leads to remodeling of the spongy matrix with the formation of microfibers, which is accompanied by a decrease in the fiber diameter. The breaking strength of the fiber depends not only on the primary structure of the constituent protein, but also on the way it was formed. Simulation of the assembly of microfibers and the fibers formed of them can clarify the natural spider web spinning and enhance the development of technology for producing biomaterials with unique properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号