首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Respiratory adaptation to chronic hypercapnia in newborn rats   总被引:1,自引:0,他引:1  
We asked 1) whether newborn rats respond to chronic hypercapnia with a persistent increase in ventilation and 2) whether changes in lung mass were accompanying the respiratory adaptation to chronic hypercapnia, as previously observed during neonatal chronic hypoxia. Five litters of rats were kept in 7% CO2 (with 21% O2) from day 1 to 7 after birth (CO2exp) and compared with six litters of control rats growing in normocapnia-normoxia (C). Body weight was similar between the two groups. Ventilation, measured by flow plethysmography, increased in CO2exp from day 2 and remained steadily elevated, and at day 7 it almost doubled (174%) the C value because of the large increase in tidal volume and mean inspiratory flow (192 and 189%, respectively) with no changes in respiratory frequency. Two days after return to normocapnia, ventilation was still 33% higher than in C; at this time, acute exposure to hypercapnia increased ventilation relatively less in the CO2exp than in C because of a lower increase in tidal volume. Neither the lung weight-to-body weight nor the heart weight-to-body weight ratios increased in CO2exp. We conclude that 1) chronic hypercapnia in newborn rats induces a steady increase in ventilation, which persists at least 2 days after return to normocapnia with a reduction in the acute response to CO2, and 2) hyperventilation per se is not the cause of the increased lung mass observed during chronic neonatal hypoxia.  相似文献   

2.
Rats were exposed to hypobaric hypoxia (0.5 atm) for up to 3 wk. Hypoxic rats failed to gain weight but maintained normal brain water and ion content. Blood hematocrit was increased by 48% to a level of 71% after 3 wk of hypoxia compared with littermate controls. Brain blood flow was increased by an average of 38% in rats exposed to 15 min of 10% normobaric oxygen and by 23% after 3 h but was not different from normobaric normoxic rats after 3 wk of hypoxia. Sucrose space, as a measure of brain plasma volume, was not changed under any hypoxic conditions. The mean brain microvessel density was increased by 76% in the frontopolar cerebral cortex, 46% in the frontal motor cortex, 54% in the frontal sensory cortex, 65% in the parietal motor cortex, 68% in the parietal sensory cortex, 68% in the hippocampal CA1 region, 57% in the hippocampal CA3 region, 26% in the striatum, and 56% in the cerebellum. The results indicate that hypoxia elicits three main responses that affect brain oxygen availability. The acute effect of hypoxia is an increase in regional blood flow, which returns to control levels on continued hypoxic exposure. Longer-term effects of continued moderate hypoxic exposure are erythropoiesis and a decrease in intercapillary distance as a result of angiogenesis. The rise in hematocrit and the increase in microvessel density together increase oxygen availability to the brain to within normal limits, although this does not imply that tissue PO2 is restored to normal.  相似文献   

3.
Microcirculatory changes in the window chamber preparation in Syrian golden hamsters, secondary to chronic hypoxia adaptation, are presented herein. Adaptation was attained by keeping animals in a 10% oxygen environment for 1 wk and 5% the following week. The following groups were studied: group 1, adapted to chronic hypoxia and kept in a 5% oxygen environment throughout the experiment; group 2, adapted to chronic hypoxia and kept in a 21% oxygen environment 24 h before and during the experiment; and group 3, control. Adaptation caused venule enlargement and hematocrit increase (68.6 +/- 2.44 in group 1, 70 +/- 2.66 in group 2, and 43.27 +/- 2.30 in group 3; P < 0.05). Whereas heart rate decreased in adapted animals, blood pressure remained constant. Group 1 presented alkalosis, hypocapnia, and hypoxemia. The adapted groups had decreased blood flow velocity in arterioles and veins. We found no difference in microvasculature oxygen tension between groups 2 and 3; however, the number of capillaries with flow was markedly reduced in group 1 but significantly increased in group 2. Our findings suggest that, as an adaptation to hypoxia, erythropoiesis may prove beneficial by increasing blood viscosity and shear stress, leading to vasodilatation, in addition to the increase in oxygen-carrying capacity. Calculations show that oxygen extraction in the tissue of the window chamber model was significantly lowered in adapted animals breathing 5% oxygen, but was unchanged from the control when breathing 21% oxygen, even though blood hemoglobin content was increased from 14.5 +/- 0.07 g/dl at control to 21.04 +/- 1.24 g/dl in the adapted animals (P < 0.05).  相似文献   

4.
Respiratory adaptations to chronic high altitude hypoxia   总被引:6,自引:0,他引:6  
  相似文献   

5.
In experiments on Wistar rats processes nitric oxide production on concentration of anions (NO2-, NO3-), carbamide and polyamines contents were investigated in processes of rats adaptation to acute hypoxia (7% O2 in N2, 30 min) and intermittent hypoxia training (10% O2 in N2, 15 min, 5 cycles daily) during 14 days. NO production by oxygen-dependent and oxygen-independent metabolites paths has been investigated. It is concluded that the disturbances in nitric oxide system induced by acute hypoxia by L-arginine injections may result in acute hypoxia.  相似文献   

6.
Newborn rats were exposed to staged adaptation to altitude hypoxia in a pressure chamber at an atmospheric pressure corresponding to an altitude from 2000 to 9000 m. The time course of changes in the synthesis of RNA and DNA by the nuclei of muscle and connective tissue cells of the heart were studied by light autoradiography with the use of 3H-5-uridine and 3H-thymidine. In the course of early postnatal ontogenesis adaptation to altitude hypoxia was demonstrated to be accompanied by the intensified synthesis of nucleic acids by muscle and non-muscle cells of the heart, which is regarded as a compensatory-adaptation reaction of the myocardium to hyperfunction under the test experimental conditions.  相似文献   

7.
Effective protection of the heart against ischemia/reperfusion injury is one of the most important goals of experimental and clinical research in cardiology. Besides ischemic preconditioning as a powerful temporal protective phenomenon, adaptation to chronic hypoxia also increases cardiac tolerance to all major deleterious consequences of acute oxygen deprivation such as myocardial infarction, contractile dysfunction and ventricular arrhythmias. Although many factors have been proposed to play a potential role, the detailed mechanism of this long-term protection remains poorly understood. This review summarizes current limited evidence for the involvement of ATP-sensitive potassium channels, reactive oxygen species, nitric oxide and various protein kinases in cardioprotective effects of chronic hypoxia.  相似文献   

8.
9.
Heart mitochondria in rats submitted to chronic hypoxia.   总被引:1,自引:0,他引:1  
The effect of prolonged exposure to normobaric hypoxia on the mitochondria of myocard of rats exposed for several weeks to 8 and 7% O2 has been morphometrically evaluated. Twelve male Wistar rats housed in Nalgene cages (2 per cage) with a batch of six cages placed in plexiglass chambers were maintained in air/N2 mixtures containing different concentrations of O2. Six animals kept in similar cages under normoxia served as controls. When at day 60 the FIO2 was reduced to 8%, the weight increase stagnated and after the 81st test day, on which the hypoxic animals were subdivided into 8% and 7% groups the weight curve showed a decrease in the mean body weight for both groups. The arrest and the following loss of weight beyond the 85th day may be interpreted as the expression of a limit reached in the compensation capacity. In the 8%-group the shape of the mitochondria varied more markedly often with budding and furrowing of the surface. In the 7%-group bizarre shapes and wide variations in size with a decided shift towards larger mitochondria were noteworthy. While rats kept under 8% oxygen exhibited a numerical increase in myocardial mitochondria compared to controls, the mitochondria of the 7%-group were numerically reduced. The results suggest that hypoxia of 8% oxygen is compensatable, if only to some extent, by an increasing surface of mitochondrial membranes, and that further reduction of oxygen causes compensation mechanisms to fail as seen by the severe alterations of the mitochondrial population of the cardiomyocyte in the 7%-group.  相似文献   

10.
11.
12.
13.
Thermogenesis in newborn rats after prenatal or postnatal hypoxia   总被引:3,自引:0,他引:3  
Oxygenconsumption (O2)was measured in normoxia as ambient temperature(Ta) was lowered from 40 to15°C, at the rate of 0.5°C/min (thermoneutrality ~33°C).In 2-day-old rats born in hypoxia after hypoxic gestation, theTa-O2relationship was as in controls; their interscapular brown adiposetissue (IBAT) was hypoplastic (less proteins and DNA), with lowerconcentration of the mitochondrial uncoupling proteinthermogenin. In 8-day-old rats exposed to hypoxiapostnatally (day 2 today 8), at anyTa below thermoneutralityO2 was higher than incontrols; also, in this group IBAT was hypoplastic with decreasedthermogenin. Additional measurements under variousexperimental conditions indicated that the increased thermogeniccapacity was not explained by the smaller body mass and increased bloodoxygen content or by the eventuality of intermittent cold stimuliduring the chronic hypoxia. On the other hand, chronic hypercapnia (3%CO2 in normoxia, fromday 2 to day8) also resulted in increased normoxic thermogenesis. We conclude that chronic hypoxia in the perinatal period1) reduces IBAT mass andthermogenin concentration and2) can increase the newborn's thermogenic capacity because of stress-related mechanisms not specific to hypoxia.

  相似文献   

14.
The morphology, topographic distribution, effects of denervation, and exposure to hypercapnic hypoxia of endocrine cells were examined in rat larynx. The endocrine cells, which were immunoreactive for protein gene product 9.5 (PGP 9.5) and calcitonin gene-related peptide (CGRP), were observed within the epithelial layer of the laryngeal cavity and in the laryngeal gland, while solitary endocrine cells with apical and/or basal cytoplasmic processes appeared near the glottis. After denervation of the left cervical vagosympathetic trunk and the superior laryngeal nerve, the number of mucosal endocrine cells in the denervated side was not significantly different from that in the intact side. After exposure to hypercapnic hypoxia for 3 months, the number of endocrine cells with PGP 9.5 and CGRP was markedly increased. In conclusion, the secretion of laryngeal endocrine cells may be stimulated by CO2 rather than O2. Furthermore, the endocrine cells and the sensory and autonomic nervous system may regulate each other by an axon reflex mechanism. Endocrine cells appear to play a very important role in the local regulation of the laryngeal mucosa.  相似文献   

15.
16.
Preliminary adaptation of rats to hypoxia in the regimen exceeding the resistance to many stress agents not only produced no protective effect in response to the action of increased oxygen pressure (IOP) up to 6 kg/cm2, but, on the contrary, decreased the organism resistance. Thus, the time of occurrence of convulsions in the adapted rats was shortened, particularly when IOP acted 24 or 48 hours after the termination of training to hypoxia; this effect was somewhat weaker in experiments conducted in 3 to 4 days. Reactions became completely normal one month after the termination of training to hypoxia. Possible causes of the phenomena detected are discussed.  相似文献   

17.
Acute and chronic pulmonary and systemic hemodynamic responses to arginine vasopressin (AVP) were examined in 4-wk hypoxia-adapted and air control rats. AVP, administered intravenously as bolus injections or sustained infusions, produced major dose-dependent V1-receptor-mediated reductions in mean pulmonary arterial pressure in hypoxia-adapted rats. These effects were comparable in pentobarbital-anesthetized, thoracotomized animals and in conscious, intact rats. Chronic infusions of AVP induced a sustained reduction in mean pulmonary arterial pressure and partially prevented the development of pulmonary hypertension without changing systemic arterial pressure. AVP induced significant decreases in cardiac output in both groups; the cardiac output response was not significantly different in hypoxia-adapted and air control animals. AVP induced almost no change in MPAP in air control rats. Furthermore the systemic pressor effects of AVP were significantly blunted in hypoxia-adapted rats compared with air controls. We conclude that the pulmonary depressor and blunted systemic pressor effects of AVP observed in hypoxia-adapted rats may be related to release of a vasodilator, such as endothelium-derived relaxing factor, vasodilator prostaglandins, or atrial natriuretic peptides. Further study is needed to elucidate these mechanisms and assess the usefulness of AVP and/or its analogues in the treatment and prevention of hypoxia-induced pulmonary hypertension.  相似文献   

18.
19.
We compared the effects of adaptation to intermittent high altitude (IHA) hypoxia of various degree and duration on ischemia-induced ventricular arrhythmias in rats. The animals were exposed to either relatively moderate hypoxia of 5000 m (4 or 8 h/day, 2-3 or 5-6 weeks) or severe hypoxia of 7000 m (8 h/day, 5-6 weeks). Ventricular arrhythmias induced by coronary artery occlusion were assessed in isolated buffer-perfused hearts or open-chest animals. In the isolated hearts, both antiarrhythmic and proarrhythmic effects were demonstrated depending on the degree and duration of hypoxic exposure. Whereas the adaptation to 5000 m for 4 h/day decreased the total number of premature ventricular complexes (PVCs), extending the daily exposure to 8 h and/or increasing the altitude to 7000 m led to opposite effects. On the contrary, the open-chest rats adapted to IHA hypoxia exhibited an increased tolerance to arrhythmias that was even more pronounced at the higher altitude. The distribution of PVCs over the ischemic period was not altered by any protocol of adaptation. It may be concluded that adaptation to IHA hypoxia is associated with enhanced tolerance of the rat heart to ischemic arrhythmias unless its severity exceeds a certain upper limit. The opposite effects of moderate and severe hypoxia on the isolated hearts cannot be explained by differences in the occluded zone size, heart rate or degree of myocardial fibrosis. The proarrhythmic effect of severe hypoxia may be related to a moderate left ventricular hypertrophy (27 %), which was present in rats adapted to 7000 m but not in those adapted to 5000 m. This adverse effect can be overcome by an unknown protective mechanism(s) that is absent in the isolated hearts.  相似文献   

20.
动物对高原低氧的适应性研究进展   总被引:5,自引:0,他引:5  
Yuan QY  Xie Z 《生理科学进展》2005,36(2):179-182
本文从血液学、肺动脉、心肺发育及其它方面简要介绍了动物对高原低氧适应的生理、生化及形态学特征,同时也对其中低氧诱导因子的作用及其遗传性方面的研究进行了概述。关于高原低氧适应的遗传机制仍需进一步的深入研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号