首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cytokine-dependent regulation of tissue inhibitors of metalloproteinases (TIMPs) expression provides an important mechanism for controlling the activity of matrix metalloproteinases. We present data indicating that during inflammatory processes TIMP-1 and TIMP-3 may be involved in the proteolytic remodeling of subendothelial basement membrane of the brain microvascular system, a key step during leukocyte migration into the brain perivascular tissue. In brain endothelial cells the expression of TIMP-1 is dramatically up-regulated by major proinflammatory cytokines, with the combination of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF alpha) exhibiting the strongest synergistic stimulation. Simultaneously, IL-1beta/TNF alpha almost completely blocks TIMP-3 expression. Both synergistic effects are dose-dependent within the concentration range 0.05-5 ng/ml of both cytokines and correlate with the expression of inducible nitric oxide synthase, an endothelial cell activation marker. Down-regulation of TIMP-3 expression is also detected in astrocytes treated with TNF alpha or IFN-gamma whereas oncostatin M as well as TNF alpha up-regulate TIMP-1 mRNA level. We propose that the cytokine-modified balance between TIMP-1 and TIMP-3 expression provides a potential mechanism involved in the regulation of microvascular basement membrane proteolysis.  相似文献   

3.
Benzyl isothiocyanate (BITC), which is found in cruciferous vegetables, has been shown to have anti-carcinogenic properties. Hepatocyte growth factor (HGF) has the ability to stimulate dissociation, migration, and invasion in various tumor cells, and abnormally increased expressions of HGF and its transmembrane tyrosine kinase receptor, c-Met, have previously been detected in human breast cancer, and are associated with high tumor grade and poor prognosis. In this study, in order to assess the mechanisms relevant to the BITC-induced regulation of breast cancer cell migration and invasion, MDA-MB-231 human breast cancer cells and 4T1 murine mammary carcinoma cells were cultured in the presence of 0-4?μmol/l BITC with or without 10?μg/l of HGF. BITC inhibited both the basal and HGF-induced migration of MDA-MB-231 and 4T1 cells in a dose-dependent manner. In MDA-MB-231 cells, BITC reduced both basal and HGF-induced secretion and activity of urokinase-type plasminogen activator (uPA). In addition, BITC increased the protein levels of plasminogen activator inhibitor-1. HGF stimulated c-Met and Akt phosphorylation, but did not affect the phosphorylation of extracellular signal-regulated kinase-1/2 or stress-activated protein/c-jun N-terminal kinase. BITC suppressed NF-κB activity and reduced the HGF-induced phosphorylation of c-Met and Akt in a dose-dependent manner. LY294002, a specific Akt inhibitor, reduced both basal and HGF-induced uPA secretion and migration of MDA-MB-231 cells. In this study, we demonstrated that BITC profoundly inhibits the migration and invasion of MDA-MB-231 cells, which is associated with reduced uPA activity, and also that these phenomena are accompanied by the suppression of Akt signaling.  相似文献   

4.
Malignant gliomas exhibit abnormal expression of proteolytic enzymes that may participate in the uncontrolled cell proliferation and aberrant interactions with the brain extracellular matrix. The multifunctional membrane bound serine aminopeptidase dipeptidyl peptidase (DPP)-IV has been linked to the development and progression of several malignancies, possibly both through the enzymatic and nonenzymatic mechanisms. In this report we demonstrate the expression of DPP-IV and homologous proteases fibroblast activation protein, DPP8 and DPP9 in primary cell cultures derived from high-grade gliomas, and show that the DPP-IV-like enzymatic activity is negatively associated with their in vitro growth. More importantly, the DPP-IV positive subpopulation isolated from the primary cell cultures using immunomagnetic separation exhibited slower proliferation. Forced expression of the wild as well as the enzymatically inactive mutant DPP-IV in glioma cell lines resulted in their reduced growth, migration and adhesion in vitro, as well as suppressed glioma growth in an orthotopic xenotransplantation mouse model. Microarray analysis of glioma cells with forced DPP-IV expression revealed differential expression of several candidate genes not linked to the tumor suppressive effects of DPP-IV in previous studies. Gene set enrichment analysis of the differentially expressed genes showed overrepresentation of gene ontology terms associated with cell proliferation, cell adhesion and migration. In conclusion, our data show that DPP-IV may interfere with several aspects of the malignant phenotype of glioma cells in great part independent of its enzymatic activity.  相似文献   

5.
6.
Resveratrol is a natural phytoalexin compound found in grapes and other food products. In this study, the effect of resveratrol on the growth of human breast cancer cells was examined. Results show that resveratrol inhibits the growth of estrogen receptor(ER)-positive MCF-7 cells in a dose-dependent fashion. Detailed studies with MCF-7 cells demonstrate that resveratrol antagonized the growth-promoting effect of 17-beta-estradiol (E2) in a dose-dependent fashion at both the cellular (cell growth) and the molecular (gene activation) levels. At 5 x 10(-6) M, resveratrol abolished the growth-stimulatory effect mediated by concentrations of E2 up to 10(-9) M. The antiestrogenic effect of resveratrol could be observed at a concentration of 10(-6) M and above. The antiestrogenic effect of resveratrol was also demonstrated at the molecular level. Resveratrol in a dose-dependent fashion antagonized the stimulation by E2 of progesterone receptor gene expression in MCF-7 cells. Moreover, expression of transforming growth factor-alpha and insulin-like growth factor I receptor mRNA was inhibited while the expression of transforming growth factor beta2 mRNA was significantly elevated in MCF-7 cells cultivated in the presence of resveratrol (10(-5) M). In summary, our results show that resveratrol, a partial ER agonist itself, acts as an ER antagonist in the presence of estrogen leading to inhibition of human breast cancer cells.  相似文献   

7.
Pyroptosis is a new form of programmed cell death generated by some inflammasomes, piloting the cleavage of gasdermin (GSDM) and stimulation of dormant cytokines like IL-18 and IL-1β; these reactions are narrowly linked to certain diseases like diabetic nephropathy and atherosclerosis. Doxorubicin, a typical anthracycline, and famous anticancer drug has emerged as a prominent medication in several cancer chemotherapies, although its application is accompanied with expending of dose-dependent, increasing, irreversible and continuing cardiotoxic side effects. However, the exact path that links the induced pyroptosis to the mechanism by which Doxorubicin (DOX) acts against breast cancer cells is still puzzling. The present study seeks to elucidate the potential link between DOX-induced cell death and pyroptosis in two human breast cancer cell lines (MDA-MB-231 and T47D). We proved that treatment with DOX reduced the cell viability in a dose-dependent way and induced pyroptosis morphology in MDA-MB-231 and T47D cells. Also, protein expression analyses revealed GSDME as a key regulator in DOX-induced pyroptosis and highlighted the related role of Caspase-3 activation. Furthermore, DOX treatments induced intracellular accumulation of ROS, stimulated the phosphorylation of JNK, and Caspase-3 activation, subsequently. In conclusion, the study suggests that GSDME triggered DOX-induced pyroptosis in the caspase-3 dependent reactions through the ROS/JNK signalling pathway. Additionally, it showed that the DOX-induced cardiotoxicity and pyroptosis in breast cancer cells can be minimized by reducing the protein level of GSDME; thus, these outcomes provide a new research target and implications for the anticancer investigations and therapeutic applications.  相似文献   

8.
9.
8-Prenylnaringenin (8PN), one of the strongest plant-derived oestrogen receptors (ERs) ligand, has been suggested to have potential cancer chemo-preventive activities and anti-angiogenic properties. Because published data suggest that ERs serve as nodal point that allows interactions between hormones and growth factors mediated pathways, we decided to investigate the effects exerted by 8PN on Epidermal growth factor (EGF)-elicited pathways in breast cancer cells. Here we show that in ER positive MCF-7 cells, 8PN interferes with EGF induced cell proliferation by strongly inhibiting activation of PI(3)K/Akt pathway, without affecting EGFR expression or tyrosine phosphorylation, and exerting a synergistic activation of Erk1/2 phosphorylation. Moreover, we demonstrate that 8PN is a direct inhibitor of PI(3)K activity as it is shown by in vitro experiments with the purified enzyme and by its inability to impair serine phosphorylation of a constitutive active form of Akt. These findings suggest that inhibition of PI(3)K is a novel mechanism which contributes to 8PN activity to inhibit cancer cell survival and EGF induced proliferation.  相似文献   

10.
All-trans retinoic acid (ATRA) is currently used in clinical trials for breast cancer, in virtue of its ability to inhibit cell growth and to promote cell differentiation. Elucidation of the molecular mechanism(s) underlying the pleiotropic pharmacological activity of ATRA is of fundamental relevance for an effective use of the compound in clinics. This paper reports on the effects of ATRA treatment on the cell surface expression of a panel of adhesion molecules known to regulate the interactions between the effectors of the immune system and tumor targets. Results indicate that breast cancer (BC) cell lines exposed to ATRA selectively up-modulate the surface expression of ICAM-1/CD54, a molecule regulating cell/cell contacts. Such effect could be reproduced in all the BC cell lines analyzed, independently of their hormone receptor status, indicating that estrogens and progesterone are irrelevant in this process. The regulatory effects on ICAM-1 expression are time- and dose-dependent and reversible. Moreover, other differentiating and proliferating agents comparatively tested, e.g. dimethyl sulfoxide, estradiol or dexamethas one, are ineffective, indicating that ICAM-1 up-modulation is uniquely featured by ATRA. A second observation is that ATRA treated cells are, only apparently, less sensitive to lysis by lymphocytes activated by IL-2, as determined by means of a standard 51Cr release assay. In fact, notwithstanding this effect, a marked reduction in the ability to form colonies was highlighted in ATRA treated versus control lines after incubation with LAK. Finally, the clonogenic killing effect could be reversed using anti-CD54 mAbs as blocking tools, indicating that ICAM-1 plays a key role in the phenomena.  相似文献   

11.
The role of caspase-3 (CPP32) protease in the molecular pathways of genistein-induced cell death in TM4 cells was investigated. Fluorescence microscopy with Hoechst-33258-PI nuclear stain was used to distinguish between apoptosis and necrosis pathways of cell death. The viability of the test cells was assessed with both the trypan blue exclusion and MTT tetrazolium (3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyltetralzolium bromide, 2.5 mg/mL) assays. Caspase-3 enzymatic activity was determined using CasPASE Apoptosis Assay Kit. The overall results from all the data demonstrated that: i) genistein exerts dose- and time-dependent effects on TM4 testis cells; ii) apoptosis is induced by lower concentrations of genistein and necrosis induced by higher concentrations of genistein; iii) genistein induced activation caspase-3 enzymatic activity; iv) genistein-induction of apoptosis and necrosis was significantly inhibited by the caspase-3 inhibitor, z-DEV-FMK; v) sodium azide induced necrosis without activation of CPP32 enzymatic activity, and induction of apoptosis; and vi) genistein-induced apoptosis was associated with activation of CPP32 enzymatic activity in the cells. The overall results indicate a strong evidence of caspase-3 (CPP332) mediation in the molecular pathways of genistein-induced apoptosis in testicular cells. Apoptosis is the physiologically programmed cell death in which intrinsic mechanisms participate in the death of the cell, in contrast to necrosis, which induces inflammatory response in the affected cell. The fact that the chemopreventive role of several cancer drugs is due to induction of apoptosis augments the biotherapeutic potential of genistein for the treatment of malignant diseases including prostate and testicular cancers. It is therefore inevitable that identification of the apoptotic pathways and the points at which regulation occurs could be instrumental in the design of genistein biotherapy for such diseases.  相似文献   

12.
13.
14.
《Phytomedicine》2014,21(6):871-876
Diosgenin, a naturally occurring steroidal saponin, possess tumor therapeutic potential. However, the effect of diosgenin on cancer metastasis remains poorly understood. In this study, we performed in vitro experiments to investigate the inhibitory activity of diosgenin on human breast cancer MDA-MB-231 cell migration, and reveal the possible mechanism. Diosgenin caused a marked inhibition of cell migration in MDA-MB-231 cell by transwell assay. In addition, diosgenin significantly impacted MDA-MB-231 cell migratory behavior under real-time observation. We also found diosgenin significantly inhibited actin polymerization, Vav2 phosphorylation and Cdc42 activation, which might be, at least in part, attributed to the anti-metastatic potential of diosgenin. These findings reveal a new therapeutic potential of diosgenin for human breast cancer metastasis therapy.  相似文献   

15.
Therapy resistance can be attributed to acquisition of anti-apoptotic mechanisms by the cancer cells. Therefore, developing approaches that trigger non-apoptotic cell death in cancer cells to compensate for apoptosis resistance will help to treat cancer effectively. Triple-negative breast cancers (TNBC) are among the most aggressive and therapy resistant to breast tumors. Here we report that manumycin A (Man A), an inhibitor of farnesyl protein transferase, reduces cancer cell viability through induction of non-apoptotic, non-autophagic cytoplasmic vacuolation death in TNBC cells. Man A persistently induced cytoplasmic vacuolation and cell death through the expression of microtubule-associated protein 1 light chain 3 (LC3) and p62 proteins along with endoplasmic reticulum (ER) stress markers, Bip and CHOP, and accumulation of ubiquitinated proteins. As inhibitors of apoptosis and autophagy failed to block cytoplasmic vacuolation and its associated protein expression or cell death, it appears that these processes are not involved in the death induced by Man A. Ability of thiol antioxidant, NAC in blocking Man A-induced vacuolation, death and its related protein expression suggests that sulfhydryl homeostasis may be the target of Man A. Surprisingly, normal human mammary epithelial cells failed to undergo cytoplasmic vacuolation and cell death, and grew normally in presence of Man A. In conjunction with its in vitro effects, Man A also reduced tumor burden in vivo in xenograft models that showed extensive cytoplasmic vacuoles and condensed nuclei with remarkable increase in the vacuolation-associated protein expression together with increase of p21, p27, PTEN and decrease of pAkt. Interestingly, Man A-mediated upregulation of p21, p27 and PTEN and downregulation of pAkt and tumor growth suppression were also mimicked by LC3 knockdown in MDA-MB-231 cells. Overall, these results suggest novel therapeutic actions by Man A through the induction of non-apoptotic and non-autophagic cytoplasmic vacuolation death by probably affecting ER stress, LC3 and p62 pathways in TNBC but not in normal mammary epithelial cells.  相似文献   

16.
Metastatic tumors are mainly composed of neoplastic cells escaping from the primary tumor and inflammatory cells egressing from bone marrow. Cancer cell and inflammatory cell are remained in the state of immaturity during migration to distant organs. Here, we show that ADRB3 is crucial in cell mobilization and differentiation. Immunohistochemistry revealed ADRB3 expression is significantly more frequent in breast cancer tissues than in adjacent noncancerous tissues (92.1% vs. 31.5%). Expression of ADRB3 correlated with malignant degree, TNM stage and poor prognosis. Moreover, ADRB3 expression was markedly high in activated disseminated tumor cells, myeloid-derived suppressor cells (MDSCs), lymphocytes and neutrophil extracellular traps of patients. Importantly, ADRB3 promoted the expansion of MDSC through stimulation of bone marrow mobilization and inhibiting of the differentiation of immature myeloid cells. Furthermore, ADRB3 promoted MCF-7 cells proliferation and inhibited transdifferentiation into adipocyte-like cell by activating mTOR pathway. Ultimately, the MDSC-deficient phenotype of ADRB3 -/- PyMT mice was associated with impairment of mammary tumorigenesis and reduction in pulmonary metastasis. Collectively, ADRB3 promotes metastasis by inducing mobilization and inhibiting differentiation of both breast cancer cells and MDSCs.Subject terms: Breast cancer, Breast cancer  相似文献   

17.
The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB1 receptors could induce a non-invasive phenotype in breast metastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB1 antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB1 receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB1 receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo.  相似文献   

18.
《Autophagy》2013,9(2):200-212
Chloroquine (CQ) is a 4-aminoquinoline drug used for the treatment of diverse diseases. It inhibits lysosomal acidification and therefore prevents autophagy by blocking autophagosome fusion and degradation. In cancer treatment, CQ is often used in combination with chemotherapeutic drugs and radiation because it has been shown to enhance the efficacy of tumor cell killing. Since CQ and its derivatives are the only inhibitors of autophagy that are available for use in the clinic, multiple ongoing clinical trials are currently using CQ or hydroxychloroquine (HCQ) for this purpose, either alone, or in combination with other anticancer drugs. Here we show that in the mouse breast cancer cell lines, 67NR and 4T1, autophagy is induced by the DNA damaging agent cisplatin or by drugs that selectively target autophagy regulation, the PtdIns3K inhibitor LY294002, and the mTOR inhibitor rapamycin. In combination with these drugs, CQ sensitized to these treatments, though this effect was more evident with LY294002 and rapamycin treatment. Surprisingly, however, in these experiments CQ sensitization occurred independent of autophagy inhibition, since sensitization was not mimicked by Atg12, Beclin 1 knockdown or bafilomycin treatment, and occurred even in the absence of Atg12. We therefore propose that although CQ might be helpful in combination with cancer therapeutic drugs, its sensitizing effects can occur independently of autophagy inhibition. Consequently, this possibility should be considered in the ongoing clinical trials where CQ or HCQ are used in the treatment of cancer, and caution is warranted when CQ treatment is used in cytotoxic assays in autophagy research.  相似文献   

19.
Chloroquine (CQ) is a 4-aminoquinoline drug used for the treatment of diverse diseases. It inhibits lysosomal acidification and therefore prevents autophagy by blocking autophagosome fusion and degradation. In cancer treatment, CQ is often used in combination with chemotherapeutic drugs and radiation because it has been shown to enhance the efficacy of tumor cell killing. Since CQ and its derivatives are the only inhibitors of autophagy that are available for use in the clinic, multiple ongoing clinical trials are currently using CQ or hydroxychloroquine (HCQ) for this purpose, either alone, or in combination with other anticancer drugs. Here we show that in the mouse breast cancer cell lines, 67NR and 4T1, autophagy is induced by the DNA damaging agent cisplatin or by drugs that selectively target autophagy regulation, the PtdIns3K inhibitor LY294002, and the mTOR inhibitor rapamycin. In combination with these drugs, CQ sensitized to these treatments, though this effect was more evident with LY294002 and rapamycin treatment. Surprisingly, however, in these experiments CQ sensitization occurred independent of autophagy inhibition, since sensitization was not mimicked by Atg12, Beclin 1 knockdown or bafilomycin treatment, and occurred even in the absence of Atg12. We therefore propose that although CQ might be helpful in combination with cancer therapeutic drugs, its sensitizing effects can occur independently of autophagy inhibition. Consequently, this possibility should be considered in the ongoing clinical trials where CQ or HCQ are used in the treatment of cancer, and caution is warranted when CQ treatment is used in cytotoxic assays in autophagy research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号