首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The surface plasmon polariton (SPP) coupling and enhancement in silver nanowire–nanoantenna structure is proposed and simulated by using finite difference time domain method. The results demonstrate that three-arm antenna can effectively enhance the coupling efficiency at the incident end and the SPP field intensity at the emission end. The enhancement factor, which is defined as the ratio of the SPP field intensity at the emission end with and without the three-arm antenna, for the various antenna arm lengths and incident wavelengths under different incident angles are calculated. The suggested structure can be served as an enhanced plasmonic waveguide for the nanophotonic and plasmonic circuits in the future.  相似文献   

2.
The Ag–Cu nanoparticle arrays, prepared using the electrochemical deposition method, were assembled into the metal–insulator–metal (MIM) structure with polyvinyl alcohol acting as insulating layer, the transmission spectrum of the MIM structure was observed to support the multiple surface plasmon resonances in the wavelength range 1,000 to 2,600 nm. The multiple peaks were formed due to the superposition and coupling of the surface plasmon resonance of nanoparticles with various sizes in the metal layers. The newly found MIM structure in which multiple resonances exist has a potential application in multiband-pass filters and optical magnetic metamaterials at the resonance wavelength.  相似文献   

3.
The localized surface plasmon resonances of multilayered nanostructures are studied using finite difference time domain simulations and plasmon hybridization method. Concentric metal–dielectric–metal (MDM) structure with metal core and nanoshell separated by a thin dielectric layer exhibits a strong coupling between the core and nanoshell plasmon resonance modes. The coupled resonance mode wavelengths show dependence on the dielectric layer thickness and composition of core and outer layer metal. The aluminum-based MDM structures show lower plasmon wavelength compared with Ag- and Au-based MDM nanostructures. The calculated refractive index sensitivity (RIS) factor is in the order Ag–Air–Ag>Au–Air–Au>Al–Air–Al for monometallic multilayered nanostructures. Bimetallic multilayered nanostructures support strong and tunable plasmon resonance wavelengths as well as high RIS factor of 510 nm/refractive index unit (RIU) and 470 nm/RIU for Al–Air–Au and Ag-Air-Au, respectively. The MDM structures not only exhibit higher index sensitivity but also cover a wide ultraviolet–near-infrared wavelengths, making these structures very promising for index sensing, biomolecule sensing, and surface-enhanced Raman spectroscopy.  相似文献   

4.
The propagation characteristics of symmetric surface plasmon polariton mode in a glass–metal–glass waveguide are presented. Gallium lanthanum sulfide has been taken as the glass and silver (Ag) has been used as the metal. The analysis has been done both numerically and analytically. A two-dimensional finite-difference time-domain-based simulation model has been developed in order to analyze the propagation characteristics numerically. The obtained results using numerical and analytical methods have been compared and a very good agreement has been found.  相似文献   

5.
6.
Plasmonics - A surface plasmon resonance (SPR) biosensor based on a graphene nanoribbon array in a microfluidic flow cell operating in a flow-over format is studied. The optical response of the...  相似文献   

7.
8.
A theoretical study based on quasi-static approximation is performed to investigate the location-dependent local field enhancement around the dielectric shell-coated gold nanosphere. Our calculation results show that the local field distribution near a gold nanoparticle can be altered greatly by coating with a dielectric shell. Because of the polarizability of the dielectric shell, increasing azimuth angle along the inner surface leads to the increase of the local field, which is opposite to that of the outer surface. Furthermore, the location-dependent local field enhancement and resonance frequency at both the inner and outer surfaces can also be modulated by varying the shell thickness and shell dielectric constant. These calculation results about the location-dependent local field enhancement show the potential of dielectric-coated metallic nanostructure for single-molecule detection based on surface-enhanced Raman scattering and surface enhanced fluorescence.  相似文献   

9.
In this paper, the coupling interaction is investigated between a metallic nanowire array and a metal film under the Kretschmann condition. The plasmonic multilayer is composed of a metallic nanowire array embedded in a polymer layer positioned above a metal film, exploiting the classical surface plasmon resonance (SPR) configuration. We analyze the influence of various structural parameters of the metallic nanowire array on the SPR spectrum of thin metal film. The results show that the coupling interactions of nanowires with the metal film can greatly affect SPR resonance wavelength and increase SPR sensitivity. The coupling strength of metallic nanowire array and metal film also impacts resonance wavelength, which can be used to adjust SPR range but have little effect on its sensitivity. The results are confirmed using a dipole coupling resonance model of metallic nanowire. We demonstrated that this nanostructured hybrid structure can be used for high sensitivity SPR monitoring in a large spectral range, which is important for advanced SPR measurement including fiber-optic SPR sensing technology.  相似文献   

10.
The enhancement factor for surface plasmon–polaritons scattering by a thin dielectric grating was measured experimentally. Scattering of a p-polarized wave may be up to 30,000 times stronger than the non-resonant scattering of an s-polarized wave by the same grating. A detailed comparison between the theoretical calculations and experimental measurements was performed. Strong localization of the scattered field near the edges of diffraction grating grooves was found. Such localization is very promising for numerous applications, e.g., biological sensors, optical tweezers for catching particles, or viruses, etc.  相似文献   

11.
We numerically investigate the buried effects of surface plasmon resonance (SPR) modes for the periodic silver-shell nanopearl dimer (PSSND) array and their solid counterparts with different buried depths in a silica substrate by means of finite element method with three-dimensional calculations. The investigated PSSND array is an important novel geometry for plasmonic metal nanoparticles (MNPs), combining the highly attractive nanoscale optical properties of both metallic nanoshell and cylindrical pore filled with a dielectric. Numerical results for SPR modes corresponding to the effects of different illumination wavelengths, absorption spectra, pore–dielectric, electric field components and total field distribution, charge density distribution, and the model of the induced local field or an applied field of the PSSND array are reported as well. It can be found that the buried MNPs with cylindrical pore filled with a dielectric in a substrate exhibit tunable SPR modes corresponding to the bonding and antibonding modes that are not observed for their solid counterparts.  相似文献   

12.
We present a quantitative experimental analysis of a surface plasmon polariton (SPP) interferometer relying on elliptical Bragg mirrors. By using a leakage radiation microscope, we observe oscillation fringes with unit visibility at the two interferometer exits. We study the properties of the SPP beam splitter and determine experimentally both the norm and phase of the SPP reflection and transmission coefficients.  相似文献   

13.
Plasmonics - This research illustrates a parametric study based on surface plasmon resonance of a slightly gold-coated photonic crystal fiber (PCF). In verifying sensing accuracy, the proposed...  相似文献   

14.
Gold–silver bimetallic film configuration is brought forward to realize surface plasmon resonance imaging (SPRI) biosensor with the virtues of both high sensitivity and chemical stability. The theoretical calculation is adopted to optimize the thicknesses of the metal films, and bimetallic film configuration with high refractive index sensitivity and a good linearity between reflectivity and refractive index is presented. Then, the property of the detection system is discussed. The results show that in comparison to most commercial SPRI biosensors which use single gold films, the sensitivity and molecule detection ability of the gold–silver bimetallic film configuration can be improved to a great extent. For the substrate of BAK3 glass used in this paper, the sensitivity enhancement reaches as high as 80%, which makes it a much better choice for SPRI biosensing applications.  相似文献   

15.

Continuous monitoring of air quality and rapid detection of pollutants are highly desirable in urban planning and development of smart cities. One of the primary greenhouse gases responsible for environmental degradation and respiratory diseases is nitrogen dioxide (NO2). Existing gas sensors for measuring NO2 concentration suffer from drawbacks such as cross-sensitivity, limited range, and short life span. On the other hand, optical sensors, in particular, surface plasmon resonance (SPR) sensors, have emerged as a preferred alternative owing to advantages like high selectivity, immunity to electromagnetic interference, and low response time. In this work, we design and simulate a NO2 sensor based on a glass waveguide coated with a gold film. Surface plasmons are excited at the interface by a 400–500-nm light source, incident at an angle of 43.16°. To enhance the sensitivity, we further coat the waveguide with three layers of carbon-silver (C–Ag) nanodots, which increases the surface plasmon field amplitude by nearly 7 times, in the absence of NO2. When NO2 concentration is varied in the range of 0–200 ppm, a corresponding change is observed in the reflected amplitude. In the absence of the C–Ag nanodots layer, the sensitivity is only 0.00042%/ppm, and on addition of C–Ag nanodots, the sensitivity increases significantly to 0.14235%/ppm which is nearly 343 times higher. These results demonstrate the efficiency of implementing nanodots in SPR sensor to detect and trace concentrations of contaminants in the gas phase.

  相似文献   

16.

Surface plasmon resonance (SPR)–based structures are finding important applications in sensing biological as well as inorganic samples. In SPR techniques, an angle-resolved reflection (R) profile of the incident light from a metal-dielectric interface is measured and the resonance characteristics are extracted for the identification of the target sample. However, the performance, and hence the applicability of these structures, suffers when the weight and concentration of the target samples are small. Here, we show that SPR-based sensors can create strong magnetism at optical frequency, which can be used for the detection of target samples instead of using the conventional R profiles, as the magnetic resonance varies depending on the refractive index of the target sample. Using scattering parameters retrieval method, we computationally find out the effective permeability (μeff) of a SPR sensor with a structure based on Kretschmann configuration, and use it to calculate the performance of the sensor. A comparison with the conventional technique that uses R profile to detect a target sample shows a significant increase in the sensor performance when μeff is used instead.

  相似文献   

17.
Wang  Shutao  Ma  Wenbo  Cheng  Qi  Liu  Na  Lu  Yuhong  Wu  Xuanrui  Xiang  Jingliang 《Plasmonics (Norwell, Mass.)》2022,17(1):119-129
Plasmonics - This work proposes a novel multi-channel photonic crystal fiber (PCF) based on surface plasmon resonance (SPR) technique where Au-Ta2O5 layer and Ag-Ta2O5 layer are selected as...  相似文献   

18.
We investigate the propagation characteristics of the fundamental surface plasmon polariton (SPP) mode of a finite-width metal–dielectric–metal waveguide. By changing the refractive index or the thickness of the dielectric layer of the waveguide, the SPP mode can be transformed from a mode confined in the dielectric layer into a mode confined around the metal corners. There always exists a condition at which the mode field distribution in the dielectric layer becomes almost perfectly uniform along the direction parallel to the metal layers, and this condition is insensitive to the width of the waveguide. It is also possible to obtain an ultra-uniform field distribution by controlling the refractive index of a different dielectric placed on both sides of the waveguide. The waveguide can be used as a basic structure for the realization of nanosized photonic devices and sensors.  相似文献   

19.
We study the properties of surface plasmon polaritons at an interface between a metal and a strongly nonlinear magnetic cladding, characterized by permeability $\mu=\mu_\textrm{l}+\mu_{\textrm{nl}} H^2$ . It is observed that the dispersion of modes has a significant dependance on the incident power. The incident power can be adjusted to control the propagation length. In addition, the structure shows strong confinement of the modes at the interface.  相似文献   

20.
The paper describes the detection of carbohydrate–lectin interaction on graphene-on-metal surface plasmon resonance (SPR) interfaces. Graphene-coated gold-based SPR interfaces were formed through the transfer of large-area graphene grown by chemical vapor deposition (CVD) on polycrystalline Cu foils. The method allowed successful transfer of single- and double-layered graphene sheets onto the SPR interfaces in a reproducible manner. Functionalization of the graphene interface with mannose was achieved by simple immersion into a mannose aqueous solution (100 mM), resulting in noncovalent interactions between the aromatic ring structure of graphene and mannose. The utility of the carbohydrate-modified graphene-on-gold interface for the selective and sensitive detection of carbohydrate–lectin interactions was demonstrated using model lectins from Lens culinaris (LC) and Triticum vulgaris (TV). While LC lectin binds specifically to mannopyranoside units, TV lectin has an affinity for N-acetyl glucosamine and sialic acid residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号