首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations can confer a selective advantage on specific cells, enabling them to go through the multistep process that leads to malignant transformation. The cancer stem cell hypothesis postulates that only a small pool of low-cycling stem-like cells is necessary and sufficient to originate and develop the disease. Normal and cancer stem cells share important functional similarities such as 'self-renewal' and differentiation potential. However, normal and cancer stem cells have different biological behaviours, mainly because of a profound deregulation of self-renewal capability in cancer stem cells. Differences in mode of division, cell-cycle properties, replicative potential and handling of DNA damage, in addition to the activation/inactivation of cancer-specific molecular pathways confer on cancer stem cells a malignant phenotype. In the last decade, much effort has been devoted to unravel the complex dynamics underlying cancer stem cell-specific characteristics. However, further studies are required to identify cancer stem cell-specific markers and targets that can help to confirm the cancer stem cell hypothesis and develop novel cancer stem cell-based therapeutic approaches.  相似文献   

2.
Inflammation has been implicated for some time as a potential aetiological agent in human prostate cancer. Viral and bacterial infections or even chemical carcinogens such as those found in cooked meat have been proposed as the inflammatory stimuli, but the mechanism of cancer induction is unknown. Recent information about gene expression patterns in normal and malignant epithelial stem cells from human prostate provides a new hypothesis for inflammation-induced carcinogenesis. The hypothesis states that in the stem cells located in the basal cell compartment of the prostate, activated prostate epithelial stem cells acquire a survival advantage, by expressing one of more of the same cytokines such as IL6. The establishment of one or more autocrine signalling loops results in an expansion of these cells in the absence of inflammation, as a potential first stage in the development of the tumour.  相似文献   

3.
The terms cancer-initiating or cancer stem cells have been the subject of great interest in recent years. In this review we will use pancreatic cancer as an overall theme to draw parallels with historical findings to compare to recent reports of stem-like characteristics in pancreatic cancer. We will cover such topics as label-retaining cells (side-population), ABC transporter pumps, telomerase, quiescence, cell surface stem cell markers, and epithelial–mesenchymal transitions. Finally we will integrate the available findings into a pancreatic stem cell model that also includes metastatic disease.  相似文献   

4.
In spite of the early speculation by Loewenstein that one of the critical distinguishing phenotypes of cancers from normal cells was the dysfunction of gap junctional intercellular communication (GJIC), this hypothesis has not captured the attention of most birth defects and cancer researchers. Moreover, even with later demonstrations that factors that influence normal development and carcinogenesis by modulating GJIC, such as chemical teratogens and tumor-promoting chemicals, inflammatory factors, hormones and growth factors, antisense connexin genes, knockout mouse models, human inherited mutated connexin genes, si-connexin RNA, chemopreventive and chemotherapeutic chemicals, it is rare that one sees any reference to these studies by the mainstream investigators in these fields. Based on the assumption that the evolutionarily conserved connexin genes found in metazoans are needed for normal development and the maintenance of health and T. Dobzhansky's statement "Nothing in biology makes sense except in the light of evolution," a short review of the roles of endogenous and exogenous modulators of GJIC will be made in the context of the multistage, multimechanism process of carcinogenesis, the stem cell theory of carcinogenesis, the discovery and characterization of normal adult stem "cancer stem" cells and the observation that two distinct classes of GJIC-deficient cancer cells are known. The implications of these observations to a "systems biological" view of the role of gap junctions and the nutritional prevention and treatment of several chronic diseases and cancer will be discussed.  相似文献   

5.
The mechanical properties of single cells play important roles in regulating cell-matrix interactions, potentially influencing the process of mechanotransduction. Recent studies also suggest that cellular mechanical properties may provide novel biological markers, or "biomarkers," of cell phenotype, reflecting specific changes that occur with disease, differentiation, or cellular transformation. Of particular interest in recent years has been the identification of such biomarkers that can be used to determine specific phenotypic characteristics of stem cells that separate them from primary, differentiated cells. The goal of this study was to determine the elastic and viscoelastic properties of three primary cell types of mesenchymal lineage (chondrocytes, osteoblasts, and adipocytes) and to test the hypothesis that primary differentiated cells exhibit distinct mechanical properties compared to adult stem cells (adipose-derived or bone marrow-derived mesenchymal stem cells). In an adherent, spread configuration, chondrocytes, osteoblasts, and adipocytes all exhibited significantly different mechanical properties, with osteoblasts being stiffer than chondrocytes and both being stiffer than adipocytes. Adipose-derived and mesenchymal stem cells exhibited similar properties to each other, but were mechanically distinct from primary cells, particularly when comparing a ratio of elastic to relaxed moduli. These findings will help more accurately model the cellular mechanical environment in mesenchymal tissues, which could assist in describing injury thresholds and disease progression or even determining the influence of mechanical loading for tissue engineering efforts. Furthermore, the identification of mechanical properties distinct to stem cells could result in more successful sorting procedures to enrich multipotent progenitor cell populations.  相似文献   

6.
Understanding the process of carcinogenesis will involve both the accumulation of many scientific facts derived from molecular, biochemical, cellular, physiological, whole animal experiments and epidemiological studies, as well as from conceptual understanding as to how to order and integrate those facts. From decades of cancer research, a number of the "hallmarks of cancer" have been identified, as well as their attendant concepts, including oncogenes, tumor suppressor genes, cell cycle biochemistry, hypotheses of metastasis, angiogenesis, etc. While all these "hallmarks" are well known, two important concepts, with their associated scientific observations, have been generally ignored by many in the cancer research field. The objective of the short review is to highlight the concept of the role of human adult pluri-potent stem cells as "target cells" for the carcinogenic process and the concept of the role of gap junctional intercellular communication in the multi-stage, multi-mechanism process of carcinogenesis. With these two concepts, an attempt has been made to integrate the other well-known concepts, such as the multi-stage, multimechanisn or the "initiation/promotion/progression" hypothesis; the stem cell theory of carcinogenesis; the oncogene/tumor suppression theory and the mutation/epigenetic theories of carcinogenesis. This new "integrative" theory tries to explain the well-known "hallmarks" of cancers, including the observation that cancer cells lack either heterologous or homologous gap junctional intercellular communication whereas normal human adult stem cells do not have expressed or functional gap junctional intercellular communication. On the other hand, their normal differentiated, non-stem cell derivatives do express connexins and express gap junctional intercellular communication during their differentiation. Examination of the roles of chemical tumor promoters, oncogenes, connexin knock-out mice and roles of genetically-engineered tumor and normal cells with connexin and anti-sense connexin genes, respectively, seems to provide evidence which is consistent with the roles of both stem cells and gap junctional communication playing a major role in carcinogenesis. The integrative hypothesis provides new strategies for chemoprevention and chemotherapy which focuses on modulating connexin gene expression or gap junctional intercellular communication in the premalignant and malignant cells, respectively.  相似文献   

7.
It has been suggested that cancer stem cells population within the solid tumor with indefinite proliferation potential drives the growth and metastasis of cancer. In literature, these malignant stem cells also named Cancer initiating cells. Cancer stem cells exhibit low rate of division and proliferation in their niche that help them to avoid chemotherapy and radiation. Epithelial cancers are believed to originate from transformation of tissue stem cells. Bone marrow-derived cells, which are frequently recruited to sites of tissue injury and inflammation, might also represent a potential source of malignancy in the gastrointestinal tract. Pancreatic cancer is one of most common cause of cancer-related death. Pancreatic cancer stem cells have been characterized recently through serial transplantation of human pancreatic cancer cells. The phenotype of Pancreatic cancer stem cells has been defined as CD24(+)CD44(+)CD326 (ESA)(+). CD133 antigen has been also suggested as a potential marker for cancer stem cell in gastrointestinal tract but recently there is also debate in this regard. More recently, other cancer stem cells in gastrointestinal tract, such as colon cancer stem cells, liver cancer stem cells, have been also characterized in their phenotype. These advances clearly will bring the new strategy in cancer treatment and control in the gastrointestinal tract. In this review, the author will discuss the current status and progress about cancer stem cell research in gastrointestinal tract and liver.  相似文献   

8.
In the last few years, there has been a growing interest in Cytokeratin 19 (CK19) studies in the cancer research field. CK19 belongs to the Type I CKs, serves as a useful research tool in prognosis, diagnosis, and management of the tumors. In this paper, we dissect the metastatic potential of CK19, its relation with cancer stem cells and retinal epithelial cells behavior, its application as a tumor marker and its role among 30 cancers such as thyroid, thoracic, lung, pancreatic, cervical, colorectal, and so forth. CK19 expressed in several cancer types because of its metastatic potential. This paper also presents modified detection methods of CK19 in disseminated tumor cells.  相似文献   

9.
Breast cancer is a heterogenous disease, composed of tumour cells with differing gene expressions and phenotypes. Very few antigens have been identified and a better understanding of tumour initiating-cells as targets for therapy is critically needed. Recently, a rare subpopulation of cells within tumours has been described with the ability to: (i) initiate and sustain tumour growth; (ii) resist traditional therapies and allow for secondary tumour dissemination; and (iii) display some of the characteristics of stem cells such as self-renewal. These cells are termed tumour-initiating cells or cancer stem cells, or alternatively, in the case of breast cancer, breast cancer stem cells. Previous studies have demonstrated that breast cancer stem cells can be enriched for in “tumoursphere” culture. Proteomics represents a novel way to investigate protein expression between cells. We hypothesise that characterisation of the proteome of the breast cancer line MCF-7 tumourspheres compared to adherent/differentiated cells identifies proteins of novel interest for further isolating or targeting breast cancer stem cells. We present evidence that: (i) the proteome of adherent cells is different to the proteome of cells grown in sphere medium from either early passage (passage 2) or late passage (passage 5) spheres; (ii) that spheres are enriched in expression of a variety of tumour-relevant proteins (including MUC1 and Galectin-3); and (iii) that targeting of one of these identified proteins (galectin-3) using an inhibitor (N-acetyllactosamine) decreases sphere formation/self-renewal of MCF-7 cancer stem cells in vitro and tumourigenicity in vivo. Hence, proteomic analysis of tumourspheres may find use in identifying novel targets for future therapy. The therapeutic targeting of breast cancer stem cells, a highly clinically relevant sub-population of tumour cells, has the potential to eliminate residual disease and may become an important component of a multi-modality treatment of cancer.  相似文献   

10.
11.
肿瘤干细胞假说是近年来提出的关于肿瘤发生的新理论,该理论认为肿瘤组织中仅有一小部分细胞可以产生肿瘤并且维持肿瘤生长。在体内外如何鉴定这种具有启动以及保持肿瘤生长的细胞类型,成为肿瘤基础及应用研究的关键问题。目前已经在白血病、乳腺癌、神经胶质瘤等肿瘤中成功鉴定并分离出肿瘤干细胞,这对于肿瘤的临床治疗具有重要意义。本文主要从肿瘤干细胞的鉴定及其在临床研究中的应用等方面进行综述。  相似文献   

12.
Cancer stem cells (CSCs) are tumoral cells which have stem features such as self-renewal, high migration capacity, drug resistance, high proliferation abilities. In the last 10 years the pathological meaning and the existence of CSCs have been matter of discussion and a large number of articles have been published about the role that these cells play in the development and maintenance of the tumors. Head and neck squamous-cell carcinoma (HNSCC) is the sixth most common cancer worldwide: early diagnosis of high-risk premalignant lesions are high priorities for reducing deaths due to head and neck cancer. In the last years the CSCs hypothesis has been faced also for head and neck cancer, with the aim of a better comprehension of the tumor biology and an early diagnosis. The evidence that the development of a tumor comes from a small number of cells with stem-like characteristic, could bring too to the identification of therapies against these cellular target, fundamental for maintenance and progression of the lesion. Here, a literature review has been reported about the detection of supposed CSCs in head and neck cancer.  相似文献   

13.
The concept that certain adult diseases, such as hypertension, type 2 diabetes and dyslipidaemia can originate from events occurring in utero arose from epidemiological studies in humans but has since been supported by numerous animal-based studies. Referred to as the "developmental origins of health and disease" or "DOHaD" hypothesis, nutritional studies to date have largely focused on two experimental paradigms involving either calorie or protein restriction for varying intervals during pregnancy, where the favoured animal models have been the sheep and rat. In recent times, attention has been directed towards the earliest stages of gestation, where there is emerging evidence to indicate that the pre-implantation embryo may be particularly sensitive to environmentally induced perturbations leading to impaired health in adulthood. In this article, we make the case for hESCs as a model of the human pre-implantation embryo. Working with comparatively large populations of embryonic cells from the species of clinical interest, the scope exists to investigate the effects of specific genetic manipulations or combinations of metabolites against contrasting genetic backgrounds, where the consequences can be evaluated in downstream tissue specific progenitor and/or terminally differentiated cells. In order to fully realize these potentials, however, both derivation and culture conditions need to be harmonized and refined so as to preclude the requirement for feeder cells and serum.  相似文献   

14.
15.
Metastasis is the major cause of death for cancer patients with solid tumours, due mainly to the ineffectiveness of current therapies once metastases begin to form. Further insight into the biology of metastasis is therefore essential in order to gain a greater understanding of this process and ultimately to develop better cancer therapies. Metastasis is an inefficient process, such that very few cells that leave a tumour successfully form macrometastases in distant sites. This suggests that only a small subset of cells can successfully navigate the metastatic cascade and eventually re-initiate tumour growth to form life-threatening metastases. Recently, there has been growing support for the cancer stem cell (CSC) hypothesis which stipulates that primary tumours are initiated and maintained by a small subpopulation of cancer cells that possess "stem-like" characteristics. Classical properties of normal stem cells are strikingly reminiscent of the observed experimental and clinical behaviour of metastatic cancer cells, including an unlimited capacity for self renewal; the requirement for a specific 'niche' or microenvironment to grow; use of the stromal cell-derived factor 1 (SDF-1)/chemokine receptor 4 (CXCR4) axis for migration; enhanced resistance to apoptosis and an increased capacity for drug resistance. Therefore, in addition to playing a role in primary tumour formation, we believe that CSCs are also key players in the metastatic process. We will review the current evidence supporting this idea and discuss the potential implications of the CSC hypothesis with regards to experimental investigation and treatment of metastatic disease.  相似文献   

16.
Cancer stem cells: the lessons from pre-cancerous stem cells   总被引:1,自引:0,他引:1  
How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of "clonal evolution" for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of precancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the "clonal evolution" is not contradictory to the CSC hypothesis, but is rather an aspect of the process of CSC development [2]. The discovery of pCSC has revealed and will continue to reveal the volatile properties of CSC with respects to their phenotype, differentiation and tumorigenic capacity during initiation and progression. Both pCSC and CSC might also serve as precursors of tumor stromal components such as tumor vasculogenic stem/progenitor cells (TVPCs). Thus, the CSC hypothesis covers the developing process of tumor-initiating cells (TIC) --> pCSC --> CSC --> cancer, a cellular process that should parallel the histological process of hyperplasia/metaplasia (TIC) --> precancerous lesions (pCSC) --> malignant lesions (CSC --> cancer). The embryonic stem (ES) cell and germline stem (GS) cell genes are subverted in pCSCs. Especially the GS cell protein piwil2 may play an important role during the development of TIC --> pCSC --> CSC, and this protein may be used as a common biomarker for early detection, prevention, and treatment of cancer. As cancer stem cell research is yet in its infancy, definitive conclusions regarding the role of pCSC can not be made at this time. However this review will discuss what we have learned from pCSC and how this has led to innovative ideas that may eventually have major impacts on the understanding and treatment of cancer.  相似文献   

17.
An increasing number of studies show that cancer stem cells become more invasive and may escape into blood stream and lymph nodes before they have received a lethal dose during radiation therapy. Recently, it has been found that graphene oxide (GO) can selectively inhibit the proliferative expansion of cancer stem cells across multiple tumor types. In this study, we investigate the feasibility of using GO during radiotherapy to synergistically inhibit cancer stem cells, and lower the risk of cancer metastasis and recurrence. We hypothesize that graphene oxide nano-flakes (GONFs) released from newly-designed radiotherapy biomaterials (fiducial) can reach targeted tumor cells within 14–21 days. These are the typical time periods between the implantation of the fiducial and the start of image-guided radiation therapy. To test this hypothesis, the spatial-temporal diffusion of GONFs in soft tissue is investigated as a function of different particle sizes. Toxicity of GONFs to normal (HUVEC) and cancer (A549) cells has been assessed using the MTT assay. In addition, the survival fraction of A549 cells treated with GONFs is determined via clonogenic assay during radiotherapy. The diffusion study shows that only GONFs sizes of 50 and 200 nm could achieve the desired concentration of 50 μg/mL for 2 cm diameter tumor after 14 and 21 days respectively. The clonogenic and the MTT assay confirm the additional benefit of GONFs in killing lung cancer cells during radiotherapy. This work avails ongoing in vivo studies that use GONFs to enhance the treatment outcome for cancer patients during radiation therapy.  相似文献   

18.
In 1975, Holliday and Pugh as well as Riggs independently hypothesized that DNA methylation in eukaryotes could act as a hereditary regulation mechanism that influences gene expression and cell differentiation. Interest in the study of epigenetic processes has been inspired by their reversibility as well as their potentially preventable or treatable consequences. Recently, we have begun to understand that the features of DNA methylation are not the same for all cells.Major differences have been found between differentiated cells and stem cells.Methylation influences various pathologies, and it is very important to improve the understanding of the pathogenic mechanisms. Epigenetic modifications may take place throughout life and have been related to cancer, brain aging, memory disturbances, changes in synaptic plasticity, and neurodegenerative diseases,such as Parkinson's disease and Huntington's disease. DNA methylation also has a very important role in tumor biology. Many oncogenes are activated by mutations in carcinogenesis. However, many genes with tumor-suppressor functions are "silenced" by the methylation of CpG sites in some of their regions.Moreover, the role of epigenetic alterations has been demonstrated in neurological diseases. In neuronal precursors, many genes associated with development and differentiation are silenced by CpG methylation. In addition,recent studies show that DNA methylation can also influence diseases that do not appear to be related to the environment, such as IgA nephropathy, thus affecting,the expression of some genes involved in the T-cell receptor signaling. In conclusion, DNA methylation provides a whole series of fundamental information for the cell to regulate gene expression, including how and when the genes are read, and it does not depend on the DNA sequence.  相似文献   

19.
Neural stem cells, which exist in various regions of the CNS throughout the mammalian lifespan, can be expanded and induced to differentiate into neurons and glia in vitro and in vivo. Because of these characteristics, there has been increasing interest in the identification and characterization of neural stem cells and neural progenitor cells both for basic developmental biology studies and for therapeutic applications to the damaged brain. Transplantation of neural stem cells or their derivatives into a host brain and the proliferation and differentiation of endogenous stem cells by pharmacological manipulations are potential treatments for many neurodegenerative diseases and brain injuries, such as Parkinson's disease, brain ischemia and spinal cord injury. Continued progress in neural stem cell research is providing a new future for brain repair.  相似文献   

20.
Increased evidence shows that normal stem cells may contribute to cancer development and progression by acting as cancer-initiating cells through their interactions with abnormal environmental elements.We postulate that normal stem cells and cancer stem cells (CSC) possess similar mechanisms of self-renewal and differentiation.CSC can be the key to the elaboration of anti-cancer-based therapy.In this article,we focus on a controversial new theme relating to CSC.Tumorigenesis may have a critical stage characterized as a "therapeutic window",which can be identified by asso-ciation of molecular,biochemical and biological events.Identifying such a stage can allow the production of more effective therapies (e.g.manipulated stem cells) to treat several cancers.More importantly,confirming the existence of a similar therapeutic window during the conversion of normal stem cells to malignant CSC may lead to targeted therapy specifically against CSC.This conversion information may be derived from investigating the biological behaviour of both normal stem cells and cancerous stem cells.Currently,there is little knowledge about the cellular and molecular mechanisms that govern the initiation and maintenance of CSC.Studies on co-evolution and interdependence of cancer with normal tissues may lead to a useful treatment paradigm of cancer.The crosstalk between normal stem cells and cancer formation may converge developmental stages of different types of stem cells (e.g.normal stem cells,CSC and embryonic stem cells).The differential studies of the convergence may result in novel therapies for treating cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号