首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NFBP6 cloned from tobacco is most closely related to petunia FBP6, a putative C-function gene. Also, NFBP6 is expressed specifically in stamens and carpels. Thus, NFBP6 provides a useful tool for molecular characterization of flower development.  相似文献   

2.
3.
MADS-box基因是真核生物中一类重要的转录因子,参与调控多项植物的生长发育过程。然而关于谷子穗发育的MADS-box基因研究比较少。本研究使用序列相似性检索,在Phytozome 13.0数据库中筛选并且鉴定出了68个谷子MADS家族成员,并对这些家族成员的物理化学性质、系统发育树、染色体定位、表达谱等进行了全面的分析。结果表明,谷子MADS家族成员在染色体上分布不均匀,可以分为5个亚族。通过组织特异性表达谱分析得到,多数MADS基因在穗中表达量要高于其他器官。此外利用转录组测序技术对发育初期的谷穗和成熟期的谷穗进行了转录组测序分析,筛选到数个与谷穗分生组织发育相关MADS-box基因。为进一步揭示MADS-box基因在谷子穗发育过程中的作用奠定了重要的基础。  相似文献   

4.
We have cloned and determined the DNA sequence of the cDNA of ntGRP15. The cDNA ntGRP15 represents an anther-specific, developmentally regulated gene from Nicotiana tabacum that encodes a glycine-rich protein. Northern analysis shows that the gene is specifically expressed in anthers and is stringently regulated during anther development. It appears only in anthers at the meiosis to free microspore stages of development. The encoded protein is small (12.2 kDa), has a 31% glycine content and contains a putative signal sequence. By both nucleotide and amino acid sequence alignment, the gene shows high sequence similarity to a gene previously isolated from Lycopersicon esculentum, namely, TomA92b9. High glycine content, presence of a signal sequence and similarity to the tomato TomA92b9 gene suggests the protein functions as a structural cell wall protein, possibly involved in pollen exine formation. Received: 14 September 1999 / Accepted: 24 September 1999  相似文献   

5.
Evolution of MADS-box gene induction by FLO/LFY genes   总被引:2,自引:0,他引:2  
Some MADS-box genes function as floral homeotic genes. The Arabidopsis LFY gene is a positive regulator of floral homeotic genes, and homologs of the FLO/LFY gene family in other angiosperms and gymnosperms are likely to have a similar function. To investigate the origin of the floral homeotic gene regulatory cascade involving the FLO/LFY gene, FLO/LFY homologs were cloned from a leptosporangiate fern (Ceratopteris richardii), two eusporangiate ferns (Angiopteris lygodiifolia and Botrychium multifidum var. robustum), three fern allies (Psilotum nudum, Equisetum arvense, and Isoetes asiatica), and a moss (Physcomitrella patens). The FLO/LFY gene phylogenetic tree indicates that both duplication and loss of FLO/LFY homologs occurred during the course of vascular plant evolution. The expression patterns of the Ceratopteris LFY genes (CrLFY1 and 2) were assessed. CrLFY1 expression was prominent in tissues including shoot tips and circinate reproductive leaves, but very weak in other tissues examined. Expression of CrLFY2 was also prominent in tissues, including shoot tips and circinate reproductive leaves. These patterns of expression are dissimilar to that of any Ceratopteris MADS-box gene previously reported, suggesting that the induction of MADS-box genes by FLO/LFY is not established at the stage of ferns. Received: 4 January 2001 / Accepted: 28 February 2001  相似文献   

6.
7.
In modern, highly intensive agriculture, the control of insect pests is basically achieved with the application of chemical pesticides. Heavy reliance on this sole strategy is associated with several drawbacks, and the development of alternative or complementary methods to chemical control is desirable. In this work, three soybean genes (KTi 3 , C-II and PI-IV)coding for serine proteinase inhibitors were isolated by PCR and transferred to Agrobacterium tumefaciens EHA 105, which in turn was used for transforming tobacco leaf and potato tuber discs. Biochemical assays confirmed that transgenic plants synthesized serine proteinase inhibitors; rates of expression varied among plants. The level of insect resistance (tested with Spodoptera littoralis Boisduval) was particularly high in tobacco, where many plants caused the death of all larvae. In potatoes, larval mortality was much less frequently achieved, but the results were still encouraging in that larval weight gain was reduced by 50% in the presence of adequate amounts of inhibitor. When 8-day-old larvae were fed different KTi 3 -expressing tobacco plants, a highly significant (P<0.01) correlation was observed between inhibitor content and larval live weight. Larval weight gain was found to be dependent on midgut proteolytic activity. On the basis of the evidence collected, it is suggested that further work is required to identify more specific inhibitors for the main proteinases of the target insect. Received: 30 March 1998 / Accepted: 9 December 1999  相似文献   

8.
9.
10.
11.
12.
The MIKC MADS-box gene family has been shaped by extensive gene duplications giving rise to subfamilies of genes with distinct functions and expression patterns. However, within these subfamilies the functional assignment is not that clear-cut, and considerable functional redundancy exists. One way to investigate the diversity in regulation present in these subfamilies is promoter sequence analysis. With the advent of genome sequencing projects, we are now able to exert a comparative analysis of Arabidopsis and poplar promoters of MADS-box genes belonging to the same subfamily. Based on the principle of phylogenetic footprinting, sequences conserved between the promoters of homologous genes are thought to be functional. Here, we have investigated the evolution of MADS-box genes at the promoter level and show that many genes have diverged in their regulatory sequences after duplication and/or speciation. Furthermore, using phylogenetic footprinting, a distinction can be made between redundancy, neo/nonfunctionalization, and subfunctionalization.  相似文献   

13.
14.
15.
Three MADS-box cDNA clones and two corresponding genomic sequences (gDNAs) have been isolated from the bryophyte Physcomitrella patens and sequenced. Our findings indicate that the genes may be expressed in a tissue- or age-specific manner, and that expression of one of them is regulated by an alternative splicing mechanism. Conceptual translation of the clones reveals that the encoded MADS-domain proteins have the typical plant-domain pattern (MIKC). Additionally, there is a high degree of conservation of intron number and positions between angiosperm MADS-box genes and the moss loci. These observations confirm the homology of moss and higher plant MADS-box genes. We conclude that the MIKC pattern evolved in MADS-box genes after the separation of the plant lineage from that of fungi and animals, and that it must have been present in the common ancestor of mosses, ferns and seed plants. Therefore it evolved at least 400 million yr ago. Phylogenetic analysis of a large subset of the sequenced plant MADS-box genes, incorporating those from P. patens , indicates that the bryophyte genes are not orthologues of spermatophyte genes belonging to any of the well recognized higher plant gene subfamilies. This conclusion accords well with reports that the known fern MADS-box genes also comprise subfamilies distinct from those of higher plants. Therefore we tentatively propose that the gene duplication and diversification events that created the MADS-box gene subfamilies, discernible in extant angiosperm and other spermatophyte groups, occurred after separation of the moss and fern lineages from the lineage which produced the higher plants.  相似文献   

16.
17.
The effect of additional virulence (vir) genes and size of plasmid T-DNA in Agrobacterium tumefa- ciens was investigated for their impact on transformation efficiency. Transformation efficiency in tobacco, cotton, and rice was increased when the T-DNA was 4.3 kb compared to 8.4 kb in size. However, when additional virG, virGN54D,virE, or virE/virG plasmids were included with the 8.4-kb T-DNA, transformation frequencies in all cases were increased over that of the shorter T-DNA without additional vir plasmids. The use of virE, virG or virGN54D copies enhanced transformation efficiency; however, the most significant increase of transformation efficiency in all three plant species was observed when the virE/virG plasmid was used for infection. The virE/virG plasmid dramatically enhanced the efficiency of Agrobacterium-mediated gene transfer; moreover, this plasmid appears to have broad efficiency since it was consistently effective on two different dicotyledon species as well as a monocotyledon species. Received: 8 February 2000 / Accepted: 21 March 2000  相似文献   

18.
The two recessive dwarfing mutants gai (GA-ins) and gal (GA-less), differing in their response to exogenously applied gibberellic acid (GA3), were mapped in the centromere region and on the long arm, respectively, of the barley chromosome 2H. The gene gai, which determines reduced plant height and GA insensitivity pleiotropically, was found to co-segregate with the two RFLP markers Xmwg2058 and Xmwg2287. Both markers are known to map close to the centromere. The GA-sensitive dwarfing gene gal was found to be linked to the three co-segregating RFLP markers Xmwg581, Xmwg882 and Xmwg2212 (proximal) and XksuG5 (distal) by 3.6 and 9.5. cM, respectively. The distance between the two mutant loci was estimated to be about 55 cM. Homoeologous relationships between the dwarfing genes within the Triticeae are discussed. Received: 11 December 1998 / Accepted: 11 February 1999  相似文献   

19.
A short history of MADS-box genes in plants   总被引:47,自引:0,他引:47  
Evolutionary developmental genetics (evodevotics) is a novel scientific endeavor which assumes that changes in developmental control genes are a major aspect of evolutionary changes in morphology. Understanding the phylogeny of developmental control genes may thus help us to understand the evolution of plant and animal form. The principles of evodevotics are exemplified by outlining the role of MADS-box genes in the evolution of plant reproductive structures. In extant eudicotyledonous flowering plants, MADS-box genes act as homeotic selector genes determining floral organ identity and as floral meristem identity genes. By reviewing current knowledge about MADS-box genes in ferns, gymnosperms and different types of angiosperms, we demonstrate that the phylogeny of MADS-box genes was strongly correlated with the origin and evolution of plant reproductive structures such as ovules and flowers. It seems likely, therefore, that changes in MADS-box gene structure, expression and function have been a major cause for innovations in reproductive development during land plant evolution, such as seed, flower and fruit formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号