首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
观察鱼藤酮诱导的线粒体轻度损伤细胞氧化应激时硫氧还蛋白转录水平的变化,探讨细胞氧化损伤的可能机制。通过荧光素发光法检测ATP生成、细胞内活性氧(ROS)水平的变化,流式细胞术检测线粒体膜电位,了解低剂量鱼藤酮对线粒体功能的影响;继而用H2O2诱导细胞氧化损伤,MTT法检测细胞活性,观察正常及线粒体缺陷细胞氧化应激时,胞内硫氧还蛋白(Trx)mRNA水平的变化。结果表明,鱼藤酮以剂量依赖方式抑制线粒体ATP的产生、降低线粒体膜电位,而细胞内ROS水平增高;当线粒体损伤细胞氧化应激时胞内Trx mRNA水平降低,提示鱼藤酮诱导线粒体轻度损伤细胞抗氧化能力降低与Trx转录受到抑制有关。  相似文献   

2.
Many lines of evidence suggest that microgravity results in increased oxidative stress in the nervous system. In order to protect neuronal cells from oxidative damage induced by microgravity, we selected some flavonoids that might prevent oxidative stress because of their antioxidant activities. Among the 20 flavonoids we examined, we found that isorhamnetin and luteolin had the best protective effects against H2O2 or SIN-1-induced cytotoxicity in SH-SY5Y cells. Using a clinostat to simulate microgravity, we found that isorhamnetin and luteolin treatment protected SH-SY5Y cells by preventing microgravity-induced increases in reactive oxygen species (ROS), nitric oxide (NO) and 3-nitrotyrosine (3-NT) levels, and a decrease in antioxidant power (AP). Moreover, isorhamnetin and luteolin treatment downregulated the expression of inducible nitric oxide synthase (iNOS), and oxidative stress was significantly inhibited by an iNOS inhibitor in SH-SY5Y cells exposed to simulated microgravity (SMG). These results indicate that isorhamnetin and luteolin could protect against microgravity-induced oxidative stress in neuroblastoma SH-SY5Y cells by inhibiting the ROS-NO pathway. These two flavonoids may have potential for preventing oxidative stress induced by space flight or microgravity.  相似文献   

3.
Hydrogen peroxide (H2O2) is a major Reactive Oxygen Species (ROS), which has been implicated in many neurodegenerative conditions including Parkinson’s disease (PD). Rosmarinus officinalis (R. officinalis) has been reported to have various pharmacological properties including anti-oxidant activity. In this study, we investigated the neuroprotective effects of R. officinalis extract on H2O2-induced apoptosis in human dopaminergic cells, SH-SY5Y. Our results showed that H2O2-induced cytotoxicity in SH-SY5Y cells was suppressed by treatment with R. officinalis. Moreover, R. officinalis was very effective in attenuating the disruption of mitochondrial membrane potential and apoptotic cell death induced by H2O2. R. officinalis extract effectively suppressed the up-regulation of Bax, Bak, Caspase-3 and -9, and down-regulation of Bcl-2. Pretreatment with R. officinalis significantly attenuated the down-regulation of tyrosine hydroxylase (TH), and aromatic amino acid decarboxylase (AADC) gene in SH-SY5Y cells. These findings indicate that R. officinalis is able to protect the neuronal cells against H2O2-induced injury and suggest that R. officinalis might potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress and apoptosis.  相似文献   

4.
Olfactory ensheathing cells (OECs) are a type of glia from the mammalian olfactory system, with neuroprotective and regenerative properties. β-Amyloid peptides are a major component of the senile plaques characteristic of the Alzheimer brain. The amyloid beta (Aβ) precursor protein is cleaved to amyloid peptides, and Aβ25–35 is regarded to be the functional domain of Aβ, responsible for its neurotoxic properties. It has been reported that Aβ25–35 triggers reactive oxygen species (ROS)-mediated oxidative damage, altering the structure and function of mitochondria, leading to the activation of the mitochondrial intrinsic apoptotic pathway. Our goal is to investigate the effects of OECs on the toxicity of aggregated Aβ25–35, in human neuroblastoma SH-SY5Y cells. For such purpose, SH-SY5Y cells were incubated with Aβ25–35 and OEC-conditioned medium (OECCM). OECCM promoted the cell viability and reduced the apoptosis, and decreased the intracellular ROS and the lipid peroxidation. In the presence of OECCM, mRNA and protein levels of antioxidant enzymes (SOD1 and SOD2) were upregulated. Concomitantly, OECCM decreased mRNA and the protein expression levels of cytochrome c, caspase-9, caspase-3, and Bax in SH-SY5Y cells, and increased mRNA and the protein expression level of Bcl-2. However, OECCM did not alter intracellular Ca2+ concentration in SH-SY5Y cells. Taken together, our data suggest that OECCM ameliorates Aβ25–35-induced oxidative damage in neuroblastoma SH-SY5Y cells by inhibiting the mitochondrial intrinsic pathway. These data provide new insights into the functional actions of OECCM on oxidative stress-induced cell damage.  相似文献   

5.
6.
The present work was conducted to investigate the antioxidant activity and neuroprotective effects of Tripterygium regelii extract (TRE) on H2O2-induced apoptosis in human dopaminergic cells, SH-SY5Y. TRE possessed considerable amounts of phenolics (282.73 mg tannic acid equivalents/g of extract) and flavonoids (101.43 mg naringin equivalents/g of extract). IC50 values for reducing power and DPPH radical scavenging activity were 52.51 and 47.83 μg, respectively. The H2O2 scavenging capacity of TRE was found to be 57.68 μM × μg−1 min−1. By examining the effects of TRE on SH-SY5Y cells injured by H2O2, we found that after incubation of cells with TRE prior to H2O2 exposure, the H2O2 induced cytotoxicity was significantly reversed and the apoptotic features such as change in cellular morphology, nuclear condensation and DNA fragmentation was inhibited. Moreover, TRE was very effective attenuating the disruption of mitochondrial membrane potential and apoptotic cell death induced by H2O2. TRE extract effectively suppressed the up-regulation of Bax, Caspase-3 and -9, and down-regulation of Bcl-2. Moreover, TRE pretreatment evidently increased the tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF) in SH-SY5Y cells. These findings demonstrate that TRE protects SH-SY5Y cells against H2O2-induced injury and antioxidant properties may account for its neuroprotective actions and suggest that TRE might potentially serve as an agent for prevention of neurodegenerative disease associated with oxidative stress.  相似文献   

7.
Beta-amyloid (Aβ ) neurotoxicity is important in Alzheimer’s disease (AD) pathogenesis. Aβ neurotoxicity causes oxidative stress, inflammation and mitochondrial damage resulting in neuronal degeneration and death. Oxidative stress, inflammation and mitochondrial failure are also pathophysiological mechanisms of type 2 diabetes (T2DM) which is characterized by insulin resistance. Interestingly, T2DM increases risk to develop AD which is associated with reduced neuronal insulin sensitivity (central insulin resistance). We studied the potential protective effect of adiponectin (an adipokine with insulin-sensitizing, anti-inflammatory and anti-oxidant properties) against Aβ neurotoxicity in human neuroblastoma cells (SH-SY5Y) transfected with the Swedish amyloid precursor protein (Sw-APP) mutant, which overproduced Aβ with abnormal intracellular Aβ accumulation. Cytotoxicity was measured by assay for lactate dehydrogenase (LDH) released upon cell death and lysis. Our results revealed that Sw-APP transfected SH-SY5Y cells expressed both adiponectin receptor 1 and 2, and had increased AMP-activated protein kinase (AMPK) activation and enhanced nuclear factor-kappa B (NF-κB) activation compared to control empty-vector transfected SH-SY5Y cells. Importantly, adiponectin at physiological concentration of 10 µg/ml protected Sw-APP transfected SH-SY5Y cells against cytotoxicity under oxidative stress induced by hydrogen peroxide. This neuroprotective action of adiponectin against Aβ neurotoxicity-induced cytotoxicity under oxidative stress involved 1) AMPK activation mediated via the endosomal adaptor protein APPL1 (adaptor protein with phosphotyrosine binding, pleckstrin homology domains and leucine zipper motif) and possibly 2) suppression of NF-κB activation. This raises the possibility of novel therapies for AD such as adiponectin receptor agonists.  相似文献   

8.
Neurological diseases such as Alzheimer’s and Parkinson’s diseases are incurable progressive neurological disorders caused by the degeneration of neuronal cells and characterized by motor and non-motor symptoms. Curcumin, a turmeric product, is an anti-inflammatory agent and an effective reactive oxygen and nitrogen species scavenging molecule. Hydrogen peroxide (H2O2) is the main source of oxidative stress, which is claimed to be the major source of neurological disorders. Hence, in this study we aimed to investigate the effect of curcumin on Ca2+ signaling, oxidative stress parameters, mitochondrial depolarization levels and caspase-3 and -9 activities that are induced by the H2O2 model of oxidative stress in SH-SY5Y neuronal cells. SH-SY5Y neuronal cells were divided into four groups namely, the control, curcumin, H2O2, and curcumin?+?H2O2 groups. The dose and duration of curcumin and H2O2 were determined from published data. The cells in the curcumin, H2O2, and curcumin?+?H2O2 groups were incubated for 24?h with 5?µM curcumin and 100?µM H2O2. Lipid peroxidation and cytosolic free Ca2+ concentrations were higher in the H2O2 group than in the control group; however, their levels were lower in the curcumin and curcumin?+?H2O2 groups than in the H2O2 group alone. Reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) values were lower in the H2O2 group although they were higher in the curcumin and curcumin?+?H2O2 groups than in the H2O2 group. Caspase-3 activity was lower in the curcumin group than in the H2O2 group. In conclusion, curcumin strongly induced modulator effects on oxidative stress, intracellular Ca2+ levels, and the caspase-3 and -9 values in an experimental oxidative stress model in SH-SY5Y cells.  相似文献   

9.
This study was designed to investigate the protective effects of extracellular superoxide dismutase (SOD3) against amyloid beta (Aβ25–35)-induced damage in human neuroblastoma SH-SY5Y cells and to elucidate the mechanisms responsible for this beneficial effect. SH-SY5Y cells overexpressing SOD3 were generated by adenoviral vector-mediated infection and Aβ25–35 was then added to the cell culture system to establish an in vitro model of oxidative stress. Cell viability, the generation of intracellular reactive oxygen species (ROS), the expression and activity of antioxidant enzymes, the levels of lipid peroxidation malondialdehyde (MDA), the expression of mitochondrial apoptosis-related genes and calcium images were examined. Following Aβ25–35 exposure, SOD3 overexpression promoted the survival of SH-SY5Y cells, decreased the production of ROS, decreased MDA and calcium levels, and decreased cytochrome c, caspase-3, caspase-9 and Bax gene expression. Furthermore, SOD3 overexpression increased the expression and activity of antioxidant enzyme genes and Bcl-2 expression. Together, our data demonstrate that SOD3 ameliorates Aβ25–35-induced oxidative damage in neuroblastoma SH-SY5Y cells by inhibiting the mitochondrial pathway. These data provide new insights into the functional actions of SOD3 on oxidative stress-induced cell damage.  相似文献   

10.
BackgroundJasmonates are plant lipid-derived oxylipins that act as key signaling compounds when plants are under oxidative stress, but little is known about their functions in mammalian cells. Here we investigated whether jasmonates could protect human neuroblastoma SH-SY5Y cells against oxidative stress-induced toxicity.MethodsThe cells were pretreated with individual jasmonates for 24 h and exposed to hydrogen peroxide (H2O2) for 24 h. Before the resulting cytotoxicity, intracellular reactive oxygen species (ROS) levels, and mitochondrial membrane potential were measured. We also measured intracellular glutathione (GSH) levels and investigated changes in the signaling cascade mediated by nuclear factor erythroid 2-related factor 2 (Nrf2) in cells treated with 12-oxo phytodienoic acid (OPDA).ResultsAmong the jasmonates, only OPDA suppressed H2O2-induced cytotoxicity. OPDA pretreatment also inhibited the H2O2-induced ROS increase and mitochondrial membrane potential decrease. In addition, OPDA induced the nuclear translocation of Nrf2 and increased intracellular GSH level and the expression of the Nrf2-regulated phase II antioxidant enzymes heme oxygenase-1, NADPH quinone oxidoreductase 1, and glutathione reductase. Finally, the cytoprotective effects of OPDA were reduced by siRNA-induced knockdown of Nrf2.ConclusionsThese results demonstrated that among jasmonates, only OPDA suppressed oxidative stress-induced death of human neuroblastoma cells, which occurred via activation of the Nrf2 pathway.General significancePlant-derived oxylipin OPDA may have the potential to provide protection against oxidative stress-related diseases.  相似文献   

11.
Alpha-lipoic acid (LA) has recently been reported to afford protective effects in neurodegenerative disorders. However, the mechanisms underlying LA-mediated neuroprotection remain to be investigated. This study was undertaken to determine whether LA treatment could increase endogenous antioxidants and phase 2 enzymes in cultured human neuroblastoma SH-SY5Y cells, and whether such increased cellular defenses could afford protection against cytotoxicity induced by neurotoxicants. Incubation of SH-SY5Y cells with micromolar concentrations of LA for 24 h resulted in a significant increase in the levels of reduced glutathione (GSH) and NAD(P)H:quinone oxidoreductase 1 (NQQ1) in a concentration-dependent fashion. Treatment of the cells with LA also led to an increased mRNA expression of γ-glutamylcysteine ligase catalytic subunit (GCLC) and NQO1. To determine the protective effects of the LA-induced cellular defenses on neurotoxicant-elicitedl cell injury, SH-SY5Y cells were pretreated with LA for 24 h and then exposed to acrolein, 4-hydroxy-2-nonenal (HNE), H2O2 and the peroxynitrite generator, 3-morpholinosydnonimine (SIN-1). We observed that LA pretreatment of SH-SY5Y cells led to a marked protection against acrolein, HNE, H2O2 and SIN-1-mediated cytotoxicity, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. Taken together, this study demonstrates for the first time that LA can induce GSH and NQO1 in cultured human neuroblastoma cells and LA-upregulated cellular defenses are accompanied by a markedly increased resistance to cytotoxicity induced by various neurotoxicants. The results of this study may have important implications for the neuroprotective effects of LA.  相似文献   

12.
BackgroundWhen redox balance is lost in the brain, oxidative stress can cause serious damage that leads to neuronal loss, in congruence with neurodegenerative diseases. Aucubin (AU) is an iridoid glycoside and that is one of the active constituents of Eucommia ulmoides, has many pharmacological effects such as anti-inflammation, anti-liver fibrosis, and anti-atherosclerosis.PurposeThe present study aimed to evaluate the inhibitory effects of AU on cell oxidative stress against hydrogen peroxide (H2O2)-induced injury in SH-SY5Y cells in vitro.MethodsSH-SY5Y cells were simultaneously treated with AU and H2O2 for 24 h. Cell viability was measured by CCK-8. Additionally, mitochondrial membrane depolarization, reactive oxygen species (ROS) generation, and cell apoptosis were measured by flow cytometry.ResultsThe results showed that AU can significantly increase the H2O2-induced cell viability and the mitochondrial membrane potential, decrease the ROS generation, malondialdehyde (MDA), and increase glutathione (GSH) contents and the superoxide dismutase (SOD) activity. We also found that H2O2 stimulated the production of nitric oxide (NO), which could be reduced by treatment with AU through inhibiting the inducible nitric oxide synthase (iNOS) protein expression. In H2O2-induced SH-SY5Y cells, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) content and cell apoptosis were significantly reduced by AU treatment through nuclear factor E2-related factor 2/hemo oxygenase-1 (Nrf2/HO-1) activation, inhibiting the expression of p-NF-κB/NF-κB and down-regulating MAPK and Bcl-2/Bax pathways.ConclusionThese results indicate that AU can reduce inflammation and oxidative stress through the NF-κB, Nrf2/HO-1, and MAPK pathways.  相似文献   

13.
Abstract

Exogenous hydrogen peroxide (H2O2) can easily penetrate into biological membranes and enhance the formation of other reactive oxygen species (ROS). In the present study, we have investigated the neuroprotective effects of insulin on H2O2-induced toxicity of retinoic acid (RA)-differentiated SH-SY5Y cells. To measure the changes in the cell viability of SH-SY5Y cells at different concentrations of H2O2 for 24?h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT)-based assay was used and a 100?µM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 24?h of 100?µM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), nitric oxide (NO), ROS, and calcium ion (Ca2+) in neuronal cells, but insulin can effectively diminish the H2O2-induced oxidative damages to these cells. Moreover, cells treated with insulin increased H2O2-induced suppression of glutathione levels and exerted an apparent suppressive effect on oxidative products. The results of insulin treatment with SH-SY5Y cells increased the Bcl-2 levels and decreased the Akt levels. The treatment of insulin had played a protective effect on H2O2-induced oxidative stress related to the Akt/Bcl-2 pathways.  相似文献   

14.
An increase in oxidative stress is a key factor responsible for neurotoxicity induction and cell death leading to neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases. Plant phenolics exert diverse bioactivities i.e., antioxidant, anti-inflammatory, and neuroprotective effects. Herein, phenolic compounds, namely protocatechuic aldehyde (PCA) constituents of Hydnophytum formicarum Jack. including vanillic acid (VA) and trans-ferulic acid (FA) found in Spilanthes acmella Murr., were explored for anti-neurodegenerative properties using an in vitro model of oxidative stress-induced neuroblastoma SH-SY5Y cells. Exposure of the neuronal cells with H2O2 resulted in the decrease of cell viability, but increasing in the level of reactive oxygen species (ROS) together with morphological changes and inducing cellular apoptosis. SH-SY5Y cells pretreated with 5 µM of PCA, VA, and FA were able to attenuate cell death caused by H2O2-induced toxicity, as well as decreased ROS level and apoptotic cells after 24 h of treatment. Pretreated SH-SY5Y cells with phenolic compounds also helped to upregulate H2O2-induced depletion of the expressions of sirtuin-1 (SIRT1) and forkhead box O (FoxO) 3a as well as induce the levels of antioxidant (superoxide dismutase (SOD) 2 and catalase) and antiapoptotic B-cell lymphoma 2 (Bcl-2) proteins. The findings suggest that these phenolics might be promising compounds against neurodegeneration.  相似文献   

15.
16.
Age of patients and oxidative stress in brain cells may contribute to pathogenesis of Alzheimer’s disease (AD). Erythrocytes (red blood cells, RBC) are considered as passive “reporter cells” for the oxidative status of the whole body and remain poorly investigated in AD. The aim of this study was to assess whether the antioxidant status of RBC changes in aging and AD. Blood was taken from AD and non-Alzheimer’s dementia patients, aged-matched and younger controls. The antioxidant status of RBC was evaluated in each person participated in the study by measuring levels of H2O2, organic hydroperoxides, glutathione (GSH) and glutathione disulfide (GSSG), activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, and glucose-6-phosphate dehydrogenase. In both aging and dementia, oxidative stress in RBC was shown to increase as evidenced by elevated concentrations of H2O2, organic hydroperoxides, decreased GSH/GSSG ratio, and decreased glutathione S-transferase activity. Decreased glutathione peroxidase activity in RBC may be considered as a new peripheral marker for Alzheimer’s disease while changes of other parameters of oxidative stress reflect age-related events.  相似文献   

17.
(1) Morroniside belongs to an extensive group of natural iridorid glycosides. In the present study, using human neuroblastoma SH-SY5Y cells, we have investigated the protective effects of this compound on modifications in endogenous reduced glutathione (GSH), intracellular oxygen species (ROS) and apoptotic death on H2O2-mediated cytoxicity. (2) Incubation of cells with morroniside led to a significant dose-dependent elevation of cellular GSH accompanied by a marked protection against H2O2-mediated toxicity. Morroniside at 1–100 μM inhibited the formation of ROS and the activation of caspase-3 and 9, and the upregulation of Bcl-2, whereas no significant change occurred in Bax levels. (3) The results indicated that the anti-oxidative and anti-apoptotic properties render this natural compound potentially protective against H2O2-induced cytotoxicity. (4) This study suggested that intracellular GSH appeared to be an important factor in morroniside-mediated cytoprotection against H2O2-toxicity in SH-SY5Y cells.  相似文献   

18.
Oxidative stress accompanying excessive accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction leads to the occurrence of neurodegenerative diseases. Our previous study showed that Eclalbasaponin I (EcI), a triterpene saponin isolated from Aralia elata (Miq.) Seem. (A. elata), repressed oxidative stress in human neuroblastoma SH-SY5Y cells. However, the detailed mechanism remains unclear. In this study, pretreatment with EcI in SH-SY5Y cells significantly activated the p38-mitogenactivated protein kinase (p38), the extracellular regulated protein kinase (ERK), whereas it did not affect the c-jun NH2 terminal kinases (JNK). In accordance with the initial findings, EcI-induced neuroprotective effect was attenuated by SB203580 (SB, a p38 inhibitor) or FR180204 (FR, an ERK inhibitor), being further confirmed by specific small interfering RNA (siRNA). Inhibition of either p38 or ERK up-regulated the apoptosis induction in EcI- and H2O2-cotreated cells. Furthermore, p38 or ERK suppression enhanced intracellular and mitochondrial ROS generation, decreased the activities of endogenous antioxidant defences as well as the mitochondrial membrane potential (MMP), resulting in dysfunction of mitochondria. In addition, EcI-induced autophagy and mitophagy were obviously down-regulated when p38 or ERK activation was blocked. Cumulatively, these findings supported that EcI-caused mitophagy contributed to the neuroprotective effect through p38 or ERK activation. Mitophagy induction might be an effective therapeutic intervention in neurodegenerative diseases.  相似文献   

19.
Oxidative stress is involved in the development of aging-related diseases, such as neurodegenerative diseases. Dietary antioxidants that can protect neuronal cells from oxidative damage play an important role in preventing such diseases. Previously, we reported that water-soluble fractions purified from defatted sesame seed flour exhibit good antioxidant activity in vitro. In the present study, we investigated the protective effects of white and gold sesame seed water-soluble fractions (WS-wsf and GS-wsf, respectively) against 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydrogen peroxide (H2O2) induced oxidative stress in human neuroblast SH-SY5Y cells. Pretreatment with WS-wsf and GS-wsf did not protect cells against AAPH-induced cytotoxicity, while simultaneous co-treatment with AAPH significantly improved cell viability and inhibited membrane lipid peroxidation. These results suggest that WS-wsf and GS-wsf protect cells from AAPH-induced extracellular oxidative damage via direct scavenging of peroxyl radicals. When oxidative stress was induced by H2O2, pretreatment WS-wsf and GS-wsf significantly enhanced cell viability. These results suggest that in addition to radical scavenging, WS-wsf and GS-wsf enhance cellular resistance to intracellular oxidative stress by activation of the Nrf-2/ARE pathway as confirmed by the increased Nrf2 protein level in the nucleus and increased heme oxygenase 1 (HO-1) mRNA expression. The roles of ferulic and vanillic acids as bioactive antioxidants in these fractions were also confirmed. In conclusion, our results indicated that WS-wsf and GS-wsf, which showed antioxidant activity in vitro, are also efficient antioxidants in a cell system protecting SH-SY5Y cells against both extracellular and intracellular oxidative stress.  相似文献   

20.

It is known that oxidative stress may cause neuronal injury and several experimental models showed that As2O3 exposure causes oxidative stress. Lycopene, a carotenoid, has been shown to have protective effect in neurological disease models due to antioxidant activity, but its effect on As2O3-induced neurotoxicity is not identified yet. The aim of this study is to investigate the effects of lycopene on As2O3-induced neuronal damage and the related mechanisms. Cell viability was determined by the MTT assay. Lycopene was administrated with different concentrations (2, 4, 6 and 8 µM) one hour before 2 µM As2O3 exposure in SH-SY5Y human neuroblastoma cells. The anti-oxidant effect of lycopene was determined by measuring superoxide dismutase (SOD), catalase (CAT) hydrogen peroxide (H2O2), malondialdehyde (MDA), total antioxidant status (TAS) and total oxidant status (TOS). MTT results and LDH cytotoxicity analyses showed that pretreatment with 8 µM lycopene significantly improved the toxicity due to As2O3 exposure in SH?SY5Y neuroblastoma cells. Pretreatment with lycopene significantly increased the activities of anti?oxidative enzymes as well as total antioxidant status and decreased total oxidative status in As2O3 exposed cells. The results of this study indicate that lycopene may be a potent neuroprotective against oxidative stress and could be used to prevent neuronal injury or death in several neurological diseases.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号