首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular organization of streptavidin (SA) bound to aqueous surface monolayers of biotin-functionalized lipids and binary lipid mixtures has been investigated with neutron reflectivity and electron and fluorescence microscopy. The substitution of deuterons (2H) for protons (1H), both in subphase water molecules and in the alkyl chains of the lipid surface monolayer, was utilized to determine the interface structure on the molecular length scale. In all cases studied, the protein forms monomolecular layers underneath the interface with thickness values of approximately 40 A. A systematic dependence of the structural properties of such self-assembled SA monolayers on the surface chemistry was observed: the lateral protein density depends on the length of the spacer connecting the biotin moiety and its hydrophobic anchor. The hydration of the lipid head groups in the protein-bound state depends on the dipole moment density at the interface.  相似文献   

2.
Small-angle neutron scattering (SANS) experiments have been performed on large unilamellar liposomes prepared from 1,2-dilauroylphosphatidylcholine (DLPC), 1,2-dimyristoyl-phosphatidylcholine (DMPC) and 1,2-distearoylphosphatidylcholine (DSPC) in heavy water by extrusion through polycarbonate filters with 500 A pores. The neutron scattering intensity I(Q) in the region of scattering vectors Q corresponding to 0.0015 A(-2) < or = Q(2) < or = 0.0115 A(-2) was fitted using a step function model of bilayer neutron scattering length density and supposing that the liposomes are spherical and have a Gaussian distribution of radii. Using the lipid volumetric data, and supposing that the thickness of bilayer polar region equals to d(H) = 9+/-1 A and the water molecular volume intercalated in the bilayer polar region is the same as in the aqueous bulk aqueous phase, the steric bilayer thickness d(L), the lipid surface area A(L) and the number of water molecules per lipid molecule N intercalated in the bilayer polar region were obtained: d(L) = 41.58+/-1.93 A, A(L) = 57.18+/-1.00 A(2) and N = 6.53+/-1.93 in DLPC at 20 degrees C, d(L) = 44.26+/-1.42 A, A(L) = 60.01+/-0.75 A(2) and N = 7.37+/-1.94 in DMPC at 36 degrees C, and d(L) = 49.77+/-1.52 A, A(L) = 64.78+/-0.46 A(2) and N = 8.67+/-1.97 in DSPC at 60 degrees C. After correcting for area thermal expansivity alpha approximately 0.00417 K(-1), the lipid surface area shows a decrease with the lipid acyl chain length at 60 degrees C: A(L) = 67.56+/-1.18 A(2) in DLPC, A(L) = 66.33+/-0.83 A(2) in DMPC and A(L) = 64.78+/-0.46 A(2) in DSPC. It is also shown that a joint evaluation of SANS and small-angle X-ray scattering on unilamellar liposomes can be used to obtain the value of d(H) and the distance of the lipid phosphate group from the bilayer hydrocarbon region d(H1).  相似文献   

3.
Neutron reflection and surface plasmon optical experiments have been performed to evaluate structural data of the interfacial binding reaction between the protein streptavidin and a solid-supported lipid monolayer partly functionalized by biotin moieties. Since both experimental techniques operate in a total internal reflection geometry at a substrate/solution interface, identical sample architectures allow for a direct comparison between the results obtained with these two recently developed methods. It is found that a monomolecular layer of dipalmitoyllecithin doped with 5 mol% of a biotinylated-phosphatidylethanolamine shows a thickness of d1 approximately (3.4 +/- 0.5) nm. Binding of streptavidin to the biotin groups results in an overall layer thickness of d = (5.9 + 0.5) nm that demonstrates the formation of a well-ordered protein monolayer with the (biotin+spacer) units of the functionalized lipids being fully embedded into the binding pocket of the proteins. It is demonstrated by model calculations that a more detailed picture of the internal structure of this supramolecular assembly can only be obtained if one uses deuterated lipid molecules, thus generating a high contrast between individual layers.  相似文献   

4.
X-ray reflectivity was used to study the interaction of the PX domain of p40(phox) protein (p40(phox)-PX) with a Langmuir monolayer of a mixture of SOPC (1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine), SOPS (1-stearoyl-2-oleoyl-sn-glycero-3-phosphoserine), and DPPtdIns(3)P (1,2-dipalmitoylphosphatidylinositol 3-phosphate) lipids supported on a buffered aqueous solution. The reflectivity is analyzed in terms of the known crystallographic structure of the p40(phox)-PX domain and a slab model that represents the lipid layer, yielding an electron density profile of the lipid layer and bound PX domains. This analysis determines the angular orientation and penetration depth of the p40(phox)-PX domain bound to the SOPC/SOPS/DPPtdIns(3)P monolayer. The best fit orientation is characterized by the following angles: theta = 30 +/- 10 degrees and phi = 140 +/- 30 degrees. These angles describe rotations, about axes in a coordinate system fixed to the domain, that are required to orient the domain with respect to the lipid layer at the interface. The protein penetrated into the lipid layer by 9 +/- 2 A, indicating that the protein penetrated into the headgroup region, but not deeply into the hydrocarbon region of the monolayer. In this analysis, polar Tyr(94) and hydrophobic Val(95) penetrated deepest into the lipid monolayer. The backbone of these residues was approximately 5 A above the headgroup-buffer interface, i.e., at the level of the SOPC/SOPS lipid phosphates. Positively charged Lys(92) and Lys(98) were also near the SOPC/SOPS lipid phosphates. This position of the protein allows for a favorable electrostatic contribution to binding.  相似文献   

5.
The neutron reflectivity technique is applied to determine the adsorptive interaction of the 13.5-kDa actin-binding protein hisactophilin from Dictyostelium discoideum with lipid monolayers at a lateral pressure of 21 mN/m < or = pi < or = 25 mN/m at the air-water interface. We compare binding of natural hisactophilin exhibiting a myristic acid chain membrane anchor at the N-terminus (DIC-HIS) and a fatty acid-deficient genetic product expressed in Escherichia coli (EC-HIS). It is demonstrated that only the natural hisactophilin DIC-HIS is capable of mediating the strong binding of monomeric actin to the monolayer, where it forms a layer of about 40 A thickness corresponding to the average diameter of actin monomers. Monolayers composed of pure dimyristoyl phosphatidylcholine with fully deuterated hydrocarbon tails and headgroup (DMPC-d67) and 1:1 mixtures of this lipid with chain deuterated dimyristoyl phosphatidylglycerol (DMPG-d54) are studied on subphases consisting either of fully deuterated buffer (D2O) or of a 9:1 H2O/D2O buffer that matches the scattering length density of air (CMA buffer). The reflectivity data are analyzed in terms of layer models, consisting of one to three layers, depending on the contrast of the buffer and the system. We show that both protein species bind tightly to negatively charged 1:1 DMPC-d67/DMPG-d54 monolayers, thereby forming a thin and most probably monomolecular protein layer of 12-15 A thickness. We find that the natural protein (DIC-HIS) partially penetrates into the lipid monolayer, in contrast to chain-deficient species (EC-HIS), which forms only an adsorbed layer. The coverage of the monolayer with DIC-HIS strongly depends on the presence of anionic DMPG in the monolayer. At a bulk protein concentration of 1.5 micrograms/ml, the molar ratio of bound protein to lipid is about 1:45 for the 1:1 lipid mixture but only 1:420 for the pure DMPC.  相似文献   

6.
The environment of the biotin binding site on avidin was investigated by determining the fluorescence enhancement of a series of fluorescent probes that are anilinonaphthalene sulfonic acid derivatives. Of the compounds tested, 2-anilinonaphthalene-6-sulfonic acid (2,6-ANS) exhibited the greatest enhancement under the conditions used (which would reflect both molar fluorescence enhancement and binding affinity) and exhibited more than 95% reversal upon addition of biotin. Thus, 2,6-ANS was chosen for more detailed characterization of the interaction with avidin. Only a single class of binding sites for 2,6-ANS was identified; the mean value for the Kd was 203 +/- 16 microM (X +/- 1 S.D.), and the molar ratio of 2,6-ANS binding sites to biotin binding sites was approx. 1. These results provide evidence that the biotin binding site and the 2,6-ANS binding site are at least partially overlapping, but the possibility that the probe binding site is altered by a conformational change induced by biotin binding cannot be excluded. At excitation = 328 nm and emission = 408 nm, the molar fluorescence of the bound probe was 6.8 +/- 1.0 microM-1 and that of the free probe was 0.061 +/- 0.008 microM-1 giving an enhancement ratio (molar fluorescence of bound probe/molar fluorescence of free probe) of 111 +/- 22. Upon binding, the wavelength of maximum fluorescence decreases. These findings also provide evidence that the fluorescence enhancement associated with the interaction of 2,6-ANS and avidin reflects the environment of the biotin binding site. The Kosower's Z factor, an empirical index of apolarity, was 82.1 for the 2,6-ANS binding site on avidin. This value reflects a degree of apolarity that is similar to apolar environments observed for substrate binding sites on several enzymes; although not the dominant factor, this environment may contribute to the strong binding of biotin.  相似文献   

7.
The precise molecular composition of the Xenopus laevis TFIIIA-5S ribosomal RNA complex (7S particle) has been established from small angle neutron and dynamic light scattering. The molecular weight of the particle was found to be 95,700 +/- 10,000 and 86,700 +/- 9000 daltons from these two methods respectively. The observed match point of 54.4% D2O obtained from contrast variation experiments indicates a 1:1 molar ratio. It is concluded that only a single molecule of TFIIIA, a zinc-finger protein, and of 5S RNA are present in this complex. At high neutron scattering contrast radius of gyration of 42.3 +/- 2 A was found for the 7S particle. In addition a diffusion coefficient of 4.4 x 10(-11) [m2 s-1] and a sedimentation coefficient of 6.2S were determined. The hydrodynamic radius obtained for the 7S particle is 48 +/- 5 A. A simple elongated cylindrical model with dimensions of 140 A length and 59 A diameter is compatible with the neutron results. A globular model can be excluded by the shallow nature of the neutron scattering curves. It is proposed that the observed difference of 15 A in length between the 7S particle and isolated 5S RNA most likely indicates that part(s) of the protein protrudes from the end(s) of the RNA molecule. There is no biochemical evidence for any gross alteration in 5S RNA conformation upon binding to TFIIIA.  相似文献   

8.
The mechanism via which pneumolysin (PLY), a toxin and major virulence factor of the bacterium Streptococcus pneumoniae, binds to its putative receptor, cholesterol, is still poorly understood. We present results from a series of biophysical studies that shed light on the interaction of PLY with cholesterol in solution and in lipid bilayers. PLY lyses cells whose walls contain cholesterol. Using standard hemolytic assays we have demonstrated that the hemolytic activity of PLY is inhibited by cholesterol, partially by ergosterol but not by lanosterol and that the functional stoichiometry of the cholesterol-PLY complex is 1:1. Tryptophan (Trp) fluorescence data recorded during PLY-cholesterol titration studies confirm this ratio, reveal a significant blue shift in the Trp fluorescence peak with increasing cholesterol concentrations indicative of increasing nonpolarity in the Trp environment, consistent with cholesterol binding by the tryptophans, and provide a measure of the affinity of cholesterol binding: K(d) = 400 +/- 100 nM. Finally, we have performed specular neutron reflectivity studies to observe the effect of PLY upon lipid bilayer structure.  相似文献   

9.
The purpose of this study is to develop an apparatus for simultaneous measurement of electrical and spectroscopic parameters of single ion channels. We have combined the single channel recording apparatus with an artificial lipid bilayer and a fluorescence microscope designed to detect single fluorescent molecules. The artificial membranes were formed on an agarose-coated glass and observed with an objective-type total internal reflection fluorescence microscope (TIRFM). The lateral motion of a single lipid molecule (beta-BODIPY 530/550 HPC) was recorded. The lateral diffusion constant of the lipid molecule was calculated from the trajectories of single molecules as D = 8.5 +/- 4.9 x 10(-8) cm(2)/s. Ionic channels were incorporated into the membrane and current fluctuations were recorded at the single-channel level. After incorporation of Cy3-labeled alametithin molecules into the membrane, bright spots were observed moving rather slowly (D = 4.0 +/- 1.6 x 10(-8) cm(2)/s) in the membrane, simultaneously with the alametithin-channel current. These data show the possibility of the present technique for simultaneous measurement of electrical and spectroscopic parameters of single-channel activities.  相似文献   

10.
J Torbet  J M Freyssinet 《Biochemistry》1987,26(24):7791-7798
Low-angle neutron scattering is used to study the binding of human prothrombin to small single-bilayer vesicles consisting of phosphatidylcholine and phosphatidylserine (1/1 w/w). The radius of gyration of prothrombin indicates that it is an elongated molecule. The vesicles alone were not observed to coalesce, and their molecular weight, outer radius, and average surface area per lipid were respectively (1.6 +/- 0.32) X 10(6), 114 +/- 4 A, and 110 +/- 18 A2. These values were independent of the presence of calcium and were not altered significantly by prothrombin, which binds reversibly to the vesicle outer surface with its long axis projecting approximately radially forming a 90-A thick protein shell. From the titration of the protein-vesicle interaction, the apparent dissociation constant of the binding of prothrombin to these vesicles is estimated to be 0.8 +/- 0.4 microM. At saturation, 57 +/- 7 prothrombin molecules bind, giving 25 +/- 6 lipid residues and an area of 2900 +/- 400 A2 per prothrombin molecule on the vesicle outer surface. This area is about twice that calculated from a prolate ellipsoid model for prothrombin. However, it is close to the maximum cross-sectional area of fragment 1, the lipid binding region of prothrombin, which is coin-shaped in the high-resolution X-ray structure [Park, C.H., & Tulinsky, A. (1986) Biochemistry 25, 3977-3982]. This similarity suggests that prothrombin binding could be sterically limited.  相似文献   

11.
The surfactant properties of aqueous protein mixtures (ranaspumins) from the foam nests of the tropical frog Physalaemus pustulosus have been investigated by surface tension, two-photon excitation fluorescence microscopy, specular neutron reflection, and related biophysical techniques. Ranaspumins lower the surface tension of water more rapidly and more effectively than standard globular proteins under similar conditions. Two-photon excitation fluorescence microscopy of nest foams treated with fluorescent marker (anilinonaphthalene sulfonic acid) shows partitioning of hydrophobic proteins into the air-water interface and allows imaging of the foam structure. The surface excess of the adsorbed protein layers, determined from measurements of neutron reflection from the surface of water utilizing H(2)O/D(2)O mixtures, shows a persistent increase of surface excess and layer thickness with bulk concentration. At the highest concentration studied (0.5 mg ml(-1)), the adsorbed layer is characterized by three distinct regions: a protruding top layer of approximately 20 angstroms, a middle layer of approximately 30 angstroms, and a more diffuse submerged layer projecting some 25 angstroms into bulk solution. This suggests a model involving self-assembly of protein aggregates at the air-water interface in which initial foam formation is facilitated by specific surfactant proteins in the mixture, further stabilized by subsequent aggregation and cross-linking into a multilayer surface complex.  相似文献   

12.
Highly specific ligand-receptor interactions generally characterize surface recognition reactions. Such processes can be simulated by streptavidin-biotin-specific binding. Biotin lipids have thus been synthesized, and their interaction with streptavidin (or avidin) at the air-water interface was directly shown by measurement of surface pressure isotherms and fluorescence microscopy. These proteins interact with the biotin lipid monolayer via specific binding or nonspecific adsorption. Both phenomena were clearly distinguished by use of the inactivated form of streptavidin. The binding of fluorescein-labeled streptavidin to monolayers was also directly observed by fluorescence microscopy. The fluorescence of the protein domains is directly related to the state of polarization of the exciting light. This anisotropy can only be explained by the formation of oriented two-dimensional biotin lipid-streptavidin domains.  相似文献   

13.
M T Mas  R F Colman 《Biochemistry》1985,24(7):1634-1646
Spectroscopic, ultrafiltration, and kinetic studies have been used to characterize interactions of reduced and oxidized triphosphopyridine nucleotides (TPNH and TPN), 2'-phosphoadenosine 5'-diphosphoribose (Rib-P2-Ado-P), and adenosine 2',5'-bisphosphate [Ado(2',5')P2] with with TPN-specific isocitrate dehydrogenase. Close similarity of the UV difference spectra and of the protein fluorescence changes accompanying the formation of the binary complexes provides evidence for the binding of these nucleotides to the same site on the enzyme. From the pH dependence of the dissociation constants for TPNH binding to TPN-specific isocitrate dehydrogenase in the absence and in the presence of Mn2+, over the pH range 5.8-7.6, it has been demonstrated that the nucleotide binds to the enzyme in its unprotonated, metal-free form. The involvement of positively charged residues, protonated over the pH range studied, has been postulated. One TPNH binding site per enzyme subunit has been measured by fluorescence and difference absorption titrations. A dramatic effect of ionic strength on binding has been demonstrated: about a 1000-fold decrease in the dissociation constant for TPNH has been observed at pH 7.6 upon decreasing ionic strength from 0.336 (Kd = 1.2 +/- 0.2 microM) to 0.036 M (Kd = 0.4 +/- 0.1 nM) in the presence and in the absence of 100 mM Na2SO4, respectively. Weak competition of sulfate ions for the nucleotide binding site has been observed (KI = 57 +/- 3 mM). The binding of TPN in the presence of 100 mM Na2SO4 at pH 7.6 is about 100-fold weaker (Kd = 110 +/- 22 microM) than the binding of the reduced coenzyme and is similarly affected by ionic strength. These results demonstrate the importance of electrostatic interactions in the binding of the coenzyme to TPN-specific isocitrate dehydrogenase. The large enhancement of protein fluorescence caused by binding of TPN and Rib-P2-Ado-P (delta Fmax = 50%) and of Ado(2',5')P2 (delta Fmax = 41%) has been ascribed to a local conformational change of the enzyme. An apparent stoichiometry of 0.5 nucleotide binding site per peptide chain was determined for TPN, Rib-P2-Ado-P, and Ado(2',5')P2 from fluorescence titrations, in contrast to one binding site per enzyme subunit determined from UV difference spectral titration and ultrafiltration experiments. Thus, the binding of one molecule of the nucleotide per dimeric enzyme molecule is responsible for the total increase in protein fluorescence, while binding to the second subunit does not cause further change.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
X-ray reflectivity is used to study the interaction of C2 domains of cytosolic phospholipase A(2) (cPLA(2)alpha-C2) with a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) supported on a buffered aqueous solution containing Ca(2+). The reflectivity is analyzed in terms of the known crystallographic structure of cPLA(2)alpha-C2 domains and a slab model representing the lipid layer to yield an electron density profile of the lipid layer and bound C2 domains. This new method of analysis determines the angular orientation and penetration depth of the cPLA(2)alpha-C2 domains bound to the SOPC monolayer, information not available from the standard slab model analysis of x-ray reflectivity. The best-fit orientation places the protein-bound Ca(2+) ions within 1 A of the lipid phosphate group (with an accuracy of +/-3 A). Hydrophobic residues of the calcium-binding loops CBL1 and CBL3 penetrate deepest into the lipid layer, with a 2 A penetration into the tailgroup region. X-ray measurements with and without the C2 domain indicate that there is a loss of electrons in the headgroup region of the lipid monolayer upon binding of the domains. We suggest that this is due to a loss of water molecules bound to the headgroup. Control experiments with a non-calcium buffer and with domain mutants confirm that the cPLA(2)alpha-C2 binding to the SOPC monolayer is Ca(2+)-dependent and that the hydrophobic residues in the calcium-binding loops are critical for membrane binding. These results indicate that an entropic component (due to water loss) as well as electrostatic and hydrophobic interactions contributes to the binding mechanism.  相似文献   

15.
The fluorescence of tryptophan residues of gramicidin A (gA), bound to phosphatidylcholine liposomes contains valuable information about local changes in the environment of the molecule induced by gamma radiation. With this work, we aim to demonstrate that the gamma radiation effect on the peptide involves the action of free radicals, derived from water radiolysis and the process of lipid peroxidation. Basically, the methodology consists of the analysis of UV and fluorescence emission spectra of the peptide liposome complexes under control conditions and upon gamma irradiation. Free radical production was impaired by the removal of molecular oxygen or the presence of ethanol in the liposome suspension. The intensity of the tryptophan fluorescence was recorded as a function of the gamma radiation dose in the range of 0-250 Gy and the data were fitted with a single decay exponential function containing an additional constant term (named residual fluorescence). The correlation between the decrease in tryptophan fluorescence emission (D(c) = 80 +/- 10 Gy) and increase in gamma radiation dose indicates the partial damage of the tryptophan side chains of gA. O(2) removal or ethanol addition partially reduced the decay of the tryptophan fluorescence emission involving an indirect action of gamma radiation via a water radiolysis mechanism. The residual fluorescence emission (A(0)) increases in O(2)-free buffer (98 +/- 13) and in 10% ethanol-containing buffer (74 +/- 34) compared to control conditions (23 +/- 5). Varying the dose rate between 1-10 Gy/min at a constant dose of 50 Gy, an inverse dose-rate effect was observed. Thus, our study provides evidence for the lipid peroxidation effect on the tryptophan fluorescence. In conclusion, this article sustains the hypothesis of the connection between the lipid peroxidation and structural changes of membrane proteins induced by gamma radiation. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Calponin binds to the 20-kilodalton regulatory light chain of myosin   总被引:2,自引:0,他引:2  
Szymanski PT  Goyal RK 《Biochemistry》1999,38(12):3778-3784
Calponin (CaP) is a 34 kDa smooth muscle-specific protein that has been implicated in regulation of smooth muscle contractility. Two CaP binding sites on smooth muscle myosin rod have been recently described [Szymanski and Tao (1997) J.Biol.Chem. 272, 11142-11146]. We used a combination of cosedimentation, overlay, and fluorescence assays to determine the interaction between CaP and both subfragment 1 of myosin and isolated 20 kDa regulatory light chain of myosin (RLC). Subfragment 1, which was generated by cleavage of myosin with Staphylococcus aureus protease (myosin S1SA) inhibits cosedimentation of CaP with myosin filaments. Fluorescence assay showed that CaP labeled with fluorescent label (DAN-CaP) interacts with myosin S1SA in solution via a single class of binding sites. The binding constant (kaff) of this interaction at 50 mM NaCl is (2. 1 +/- 0.2) x 10(6) M-1 (n = 3). The interaction between DAN-CaP and myosin S1SA depends on ionic strength, and the EC50 of inhibition of this interaction occurs at about 130 mM NaCl. In contrast, the subfragment 1 that was generated by papain digestion (myosin S1PA), which cleaves RLC 4 kDa away from the NH2-terminal end of the molecule, does not interact with DAN-CaP. Overlay and fluorescent assay in solution showed that CaP binds to isolated RLC, suggesting that the interaction between CaP and subfragment 1 of myosin is due to a direct binding of CaP to RLC. CaP binding to myosin S1SA is stronger than to subfragment 2 in physiological salt concentrations. CaP binding to myosin head strengthened upon phosphorylation of RLC by Ca2+/calmodulin-dependent myosin light chain kinase. We suggest that CaP binds to subfragment 1 of myosin, exclusively via the NH2-terminal end of RLC, and this interaction could play a role in regulation of the actin-myosin interaction in smooth muscle contractility.  相似文献   

17.
Lipid monolayers formed at the air-water interface containing the ganglioside GM1 in egg yolk phosphatidylcholine have been transferred according to the Langmuir-Blodgett technique to glass cover slips coated with octadecyl- or hexadecyltrichlorosilane and carbon-coated electron microscope grids. Monolayer transfer has been demonstrated with fluorescence microscopy, by the transfer of a fluorescent phospholipid analogue, N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine or Lucifer yellow labeled GM1 (LY-GM1), incorporated into the lipid monolayer. Incubation of supported monolayers with solutions of fluorescein-labeled cholera toxin (FITC cholera toxin) resulted in specific binding of the toxin to monolayers containing GM1, as revealed by fluorescence microscopy. Lateral diffusion coefficients were measured for both the receptor (LY-GM1) [(3.9 +/- 2.1) X 10(-8) cm2/s] and the receptor-ligand complex (GM1-FITC cholera toxin) [(8.9 +/- 3.2) X 10(-9) cm2/s] according to the technique of fluorescence recovery after photobleaching. In separate studies, GM1-containing monolayers transferred to electron microscope grids were incubated with solutions containing unlabeled cholera toxin, followed by negative staining with uranyl acetate. Electron microscopy revealed patches of stained cholera toxin molecules (diameter approximately 70 A) in crystalline, two-dimensional hexagonal arrays. Optical diffraction and image reconstruction showed the arrangement of the cholera toxin molecules in a planar hexagonal cell, a = 81 A. These initial reconstructions give structural information to a resolution of approximately 30 A and indicate a doughnut-shaped molecule with a central aqueous channel.  相似文献   

18.
The interaction of Pseudomonas aeruginosa exotoxin A (ETA) with lipid monolayers was studied by measuring the variation in surface pressure. ETA adsorbs to the monolayer, occupying an average area of approximately 4.6 nm2 per molecule, up to a maximum density of one molecule per 28 nm2 of lipid film, which corresponds roughly to the cross-sectional area of the toxin. This suggests that ETA molecules adsorb until they contact each other, but insert only a small portion into the lipid film. The kinetic process could be described by a Langmuir adsorption isotherm. The apparent association and dissociation rate constants were determined, as were their dependence upon toxin concentration, membrane composition, pH, and ionic strength. Two parameters were found to be paramount for this interaction: pH and surface potential of the lipid. It appears that ETA binding occurs only in a conformational state induced by low pH and is promoted by an electrostatic interaction between a positively charged region of the protein and the negative charge of acidic phospholipids. On the basis of a simple model, the salient features of ETA involved in its adsorption were derived: 1) the existence of a conformational state induced by the protonation of a group with pK 4.5 +/- 0.2; 2) a positive charge of 1.9 +/- 0.3 e.u. able to interact with the surface potential of the membrane; 3) the fraction of potential experienced by the protein in the activated state that precedes binding, approximately 80%; 4) the intrinsic adsorption and desorption rate constants, k(a)0 = (4.8 +/- 0.3) x 10(3) M(-1) s(-1) and k(d)0 = (4.4 +/- 0.4) x 10(-4) s(-1). These rate constants are independent of pH and lipid and buffer composition, and provide a dissociation constant Kd approximately 90 nM.  相似文献   

19.
Detailed stopped-flow studies in combination with site-directed mutagenesis, isothermal titration calorimetry data and x-ray crystallographic knowledge have revealed that the biphasic pre-equilibrium fluorescence changes reported for a single Ig-binding domain of protein L from Peptostreptococcus magnus binding to kappa light chain are due to the binding of the kappa light chain at two separate sites on the protein L molecule. Elimination of binding site 2 through the mutation A66W has allowed the K(d) for kappa light chain binding at site 1 to be measured by stopped-flow fluorescence and isothermal titration calorimetry techniques, giving values of 48.0 +/- 8.0 nM and 37.5 +/- 7.3 nM respectively. Conversely, a double mutation Y53F/L57H eliminates binding at site 1 and has allowed the K(d) for binding at site 2 to be determined. Stopped-flow fluorimetry suggests this to be 3.4 +/- 0.8 microM in good agreement with the value of 4.6 +/- 0.8 microM determined by isothermal titration calorimetry. The mutation Y53F reduces the affinity of site 1 to approximately that of site 2.  相似文献   

20.
Surface pressure measurements, external reflection-Fourier transform infrared spectroscopy, and neutron reflectivity have been used to investigate the lipid-binding behavior of three antimicrobial peptides: melittin, magainin II, and cecropin P1. As expected, all three cationic peptides were shown to interact more strongly with the anionic lipid, 1,2 dihexadecanoyl-sn-glycerol-3-(phosphor-rac-(1-glycerol)) (DPPG), compared to the zwitterionic lipid, 1,2 dihexadecanoyl-sn-glycerol-3-phosphocholine (DPPC). All three peptides have been shown to penetrate DPPC lipid layers by surface pressure, and this was confirmed for the melittin-DPPC interaction by neutron reflectivity measurements. Adsorption of peptide was, however, minimal, with a maximum of 0.4 mg m(-2) seen for melittin adsorption compared to 2.1 mg m(-2) for adsorption to DPPG (from 0.7 microM solution). The mode of binding to DPPG was shown to depend on the distribution of basic residues within the peptide alpha-helix, although in all cases adsorption below the lipid layer was shown to dominate over insertion within the layer. Melittin adsorption to DPPG altered the lipid layer structure observed through changes in the external reflection-Fourier transform infrared lipid spectra and neutron reflectivity. This lipid disruption was not observed for magainin or cecropin. In addition, melittin binding to both lipids was shown to be 50% greater than for either magainin or cecropin. Adsorption to the bare air-water interface was also investigated and surface activity followed the trend melittin>magainin>cecropin. External reflection-Fourier transform infrared amide spectra revealed that melittin adopted a helical structure only in the presence of lipid, whereas magainin and cecropin adopted helical structure also at an air-water interface. This behavior has been related to the different charge distributions on the peptide amino acid sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号