首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of insulin upon proteoglycan synthesis was studied in cultured smooth muscle cells from pig aorta blocked in the G0 phase by serum deprivation. Insulin enhanced [35S]sulfate incorporation into cell layer and medium-secreted proteoglycans. The increase in incorporation of the precursor was not due to a mitogenic response by smooth muscle cells to the hormone and the specific radioactivity of proteoglycans showed that the stimulation reflected a real increase in sulfated proteoglycan synthesis. Maximal stimulation was observed, for the cell layer as well as for the medium, 40 h after the addition of 1.7 x 10(-7) M insulin and reached respectively 65 and 53%. This stimulation was about 80 and 60% of the level achieved with 10% fetal calf serum for cell layer and medium-secreted proteoglycans, respectively. The half-maximal effect was attained, for both the cell layer and the medium, in the presence of 2.1 x 10(-9) M insulin. Proteoglycans secreted into the medium, in the presence of 1.7 x 10(-8) M insulin for 40 h, showed a higher proportion of complexes (24%) than those synthesized in control medium (11%) and at least 95% of the monomers from culture treated with insulin were characterized by a smaller hydrodynamic size than those synthesized by cells maintained in control medium. This decrease in the size of proteoglycans was partly due to a decrease in the size of their glycanic chains.  相似文献   

2.
We have previously shown (Berrou et al., J. Cell. Phys., 137:430-438, 1988) that porcine endothelial cell-conditioned medium (ECCM) stimulates proteoglycan synthesis by smooth muscle cells from pig aorta. ECCM stimulation requires protein cores for glycosaminoglycan chain initiation and is accompanied by an increase in the hydrodynamic size of proteoglycans secreted into the medium. This work investigates the mechanisms involved in the ECCM effect. 1) Control and ECCM stimulated proteoglycan synthesis (measured by a 20 min [35S]-sulfate labeling assay) was not inhibited by cycloheximide, indicating that the proteoglycans were composed of preexisting protein cores and that ECCM stimulates glycosylation of these protein cores. 2) Whereas ECCM stimulation of [35S]-methionine incorporation into secreted proteins only occurred after a 6 h incubation, the increase in [35S] methionine-labeled proteoglycans was observed after 1 h, and the increase was stable for at least 16 h. 3) As analysed by electrophoresis in SDS, chondroitinase digestion generated from [14C] serine-labeled proteoglycans 7 protein cores of high apparent molecular mass (550-200 kDa) and one of 47 kDa. The two protein cores of highest apparent molecular masses (550 and 460 kDa), but not the 47 kDa protein cores, showed increased [14C]-serine incorporation in response to ECCM (51%, as measured by Sepharose CL-6B chromatography). 4) Finally, incorporation of [35S]-sulfate into chondroitinase-generated glycosaminoglycan linkage stubs on protein cores was determined by Sepharose CL-6B chromatography: ECCM did not modify the ratio [35S]/[14C] in stimulated protein cores, indicating that ECCM did not affect the number of glycosaminoglycan chains. The results of these studies reveal that 1) endothelial cells secrete factor(s) that preferentially stimulate synthesis of the largest smooth muscle cell proteoglycans without structural modifications and 2) the stimulation proceeds via increased glycosylation of protein core through enhancement of xylosylated protein core, followed by enhanced protein synthesis.  相似文献   

3.
Arterial wall smooth muscle cells, originating from the inner layer (media) of pig aortas, were grown in culture. The synthesis and secretion of proteoglycans by these cells were investigated. These cells were incubated in the presence of [35S] sulfate or [14C] glucosamine and these precursors incorporation into glycosaminoglycans was followed.Proteoglycans synthesized by media cells exhibit different glycosaminoglycan distribution patterns according to their localization. The glycosaminoglycan components are largely confined to the medium (80 per cent) and exhibit a distribution pattern that ressembles closely that found in pig aorta tissue. In comparison with the extracellular and intracellular pools, the pericellular pool (trypsin released material) contains proportionally more heparan sulfate.Isotopic chase experiments demonstrated that glycosaminoglycans leave the intracellular and pericellular compartments with initial half-lives of 7 – 8 h and 13 – 14 h, respectively.About half of the labelled glycosaminoglycans was released into the medium, in an apparently undegraded form, while the rest was degraded.The production of proteoglycans is not affected by modifying the exogenous concentration of hyaluronic acid or chondroitin sulfate present in the culture medium. The synthesis of proteoglycans, but not their secretion is inhibited with cytochalasin-B, a microfilament modifying agent. The secretion of proteoglycans and also — in part — their synthesis is inhibited by antimicrotubular agents: colchicine and vinblastine, with observed intracellular accumulation of proteoglycans.These data suggest that, in arterial cells, the intracellular movement of proteoglycans during the secretory process is mediated by microtubular elements.In conclusion, our results provide evidence for the responsiveness of cultured mediacytes to antimicrotubular and antimicrofilamentar drugs, the utilization of which allows modification in the metabolism and secretion of arterial proteoglycans.  相似文献   

4.
Prostaglandin synthesis in aortic smooth muscle cells originating from healthy an atherosclerotic rabbits was studied by incubating [14C]arachidonic acid with intact confluent cells and cell homogenates. In spite of a reduced 6-keto prostaglandin F1 alpha formation, no potentiating effect on the prostaglandin E2 generation occurred. Indeed, both cyclooxygenase and prostaglandin I2 synthetase activities appear to be reduced. These results suggest that an impaired arachidonic acid utilisation in aortic smooth muscle cells may be involved in the course of the atherosclerotic process.  相似文献   

5.
Angiotensin peptides (AI, AII, AIII) increased the rate of Na+ accumulation by smooth muscle cells (SMC) cultured from rat aorta. The stimulatory effect of AII on Na+ uptake was observed when Na+ exodus via the Na+/K+ pump was blocked either by ouabain or by the removal of extracellular K+. AII was at least ten times more potent than AIII and about 100 times more potent than AI in stimulating Na+ uptake. Saralasin had little effect on Na+ uptake by itself but almost completely blocked the increase caused by AII. The stimulation of net Na+ entry by AI, but not AII, was prevented by protease inhibitors. The stimulation of Na+ uptake was almost completely blocked by amiloride. Tetrodotoxin, which prevented veratridine from increasing Na+ uptake, had no effect on the response to AII. Angiotensin increased the rate of ouabain-sensitive 86Rb+ uptake (Na+/K+ pump activity) but had no effect on ouabain-sensitive ATPase activity in frozen-thawed SMC or in microsomal membranes isolated from cultured SMC. The stimulation of ouabain-sensitive 86Rb+ uptake by AII was blocked by saralasin. Omitting Na+ from the external medium prevented AII from increasing 86Rb+ uptake. AII had no effect on cell volume or cyclic AMP levels in the cultured SMC. These results suggest that angiotensin peptides activate an amiloride-sensitive Na+ transporter which supplies the Na+/K+ pump with more Na+, its rate-limiting substrate.  相似文献   

6.
7.
8.
Cultured smooth muscle cells from pig aorta arrested in G0 phase by serum deprivation were stimulated to proliferate by replacing the medium with one containing 10% serum. Studies in DNA replication and proliferation of cells showed a relatively good synchrony: 90% of the cells were in G1 phase for 16 h after addition of serum; they entered S phase between 18 and 24 h, completed S phase and traversed G2 phase between 24 and 30–32 h; 75% of these cells multiplied after 30–32 h and the remainder were blocked at the end of G2 phase. The synthesis and secretion of sulfated proteoglycans were examined throughout a full cell cycle using metabolic labelling with [35S]sulfate. Smooth muscle cells in G1 or G2 phase synthesized and secreted sulfated proteoglycans with a possible pause at the end of the G2 phase but at the beginning of the S phase and during mitosis the incorporation of [35S]sulfate into these macromolecules stopped entirely. Structural characteristics of sulfated proteoglycans secreted into the medium during G1 phase and an entire cell cycle were investigated. The proportion of proteoglycan complexes and the relative hydrodynamic size of monomers and of constituent subunits of complexes were determined after chromatography on Sepharose CL-2B and CL-6B columns run under both associative and dissociative conditions. No significant differences were observed for the periods of the cell cycle that were studied:
1. 1. [35S]Proteoglycan complexes represented at the end of G1 phase and of the cell cycle respectively 19 and 16% of the total [35S]proteoglycans secreted into the medium.
2. 2. More than 90% of the subunits, obtained after dissociation of complexes, were characterized by a similar kav after chromatography on Sepharose CL-2B columns eluted under dissociative conditions (kav 0.68 at the end of G1 phase and 0.65 at the end of full cell cycle).
3. 3. About 95% of monomers synthesized at the two stages of the cell cycle were eluted at kav 0.25 after chromatography on Sepharose CL-6B column run under associative conditions and were characterized by a similar glycosaminoglycan distribution. These results suggest that smooth muscle cells in culture liberate similar populations of proteoglycans into the medium during the G1 and G2 phases.
  相似文献   

9.
1. Properties of the voltage-dependent anion-selective channel in cultured smooth muscle cells of the rat aorta were studied using the patch-clamp technique. 2. The channel had a single channel conductance of 346 +/- 4 pS (n = 43, mean +/- SEM) with symmetrical 142 mM-Cl- solution in inside-out patch configurations. 3. The channel was activated spontaneously at a potential range -20 approximately +20 mV and inactivated more rapidly with increases to more positive or negative potentials. 4. The channel was selective for anions and the permeability ratio for monovalent anion was Br-:Cl-:HCOO-:CH3COO-:propionate-:aspartate- = 1.1:1:0.7:0.4: less than 0.02: less than 0.02. 5. The openings of the channels were observed more frequently in inside-out membrane patches than in cell-attached ones, and were independent of intracellular free Ca concentrations. 6. The density of this channel was estimated to be 1.3/micron2. 7. Physiological roles of the channel were discussed.  相似文献   

10.
The uptake of 125I-labelled low density lipoprotein by cultured smooth muscle cells from rabbit aorta was increased by linoleic acid hydroperoxide (3-6 nmol/ml); both the binding and the degradation of the low density lipoprotein were increased. These effects could be principally ascribed to the interaction of the hydroperoxide with the cells.  相似文献   

11.
Using an intracellularly trapped dye, quin 2, effects of adenosine on intracellular free calcium concentrations ([Ca2+]i) were recorded, microfluorometrically, using rat aortic medial vascular smooth muscle cells (VSMCs) in primary culture. Regardless of whether cells were at rest (in 5 mM K+), at K+-depolarization (in 55 mM K+) or at Ca2+ depletion (in Ca2+-free media), adenosine induced a rapid reduction of [Ca2+]i, following which there was a gradual increase to pre-exposure levels, in cells at rest and in the case of Ca2+ depletion. Only when the cells were depolarized (55 mM K+) did adenosine induce a new steady [Ca2+]i level, lower than the pre-exposure value. These findings indicate that decrease in [Ca2+]i by adenosine is one possible mechanism involved in the adenosine-mediated vasodilatation, and that adenosine decreases [Ca2+]i by direct extrusion, by sequestration, or by inhibiting the influx of Ca2+ into VSMCs.  相似文献   

12.
Specific binding sites for vasoactive intestinal peptide (VIP), a potent vasodilatory polypeptide, and its effect on formation of intracellular cyclic AMP levels were studied in cultured vascular smooth muscle cells (VSMC) from rat aorta. Specific binding of 125I-labeled-VIP to cultured VSMCs was time- and temperature-dependent. Scatchard analysis of binding studies suggested the presence of two classes of high and low affinity binding sites for VIP; the apparent Kd and the number of maximal binding capacity were ∼8×10−9 M and 60,000 sites/cell (high-affinity sites) and ∼4×10−8 M and 140,000 sites/cells (low-affinity sites), respectively. Unlabeled VIP competitively inhibited the binding of 125I-labeled-VIP to its binding sites, whereas neither peptides structurally related to VIP, nor other vasoactive substances affected the binding. VIP stimulated formation of intracellular cyclic AMP in cultured VSMCs in a dose-dependent manner; the stimulatory effect of VIP on cyclic AMP formation was not blocked by propranolol and was additive with isoproterenol. The present study first demonstrates the presence of specific receptors for VIP in VSMCs functionally coupled to adenylate cyclase system. It is suggested that VIP exerts its vasodilatory effect through its specific receptors distinct from β-adrenergic receptors.  相似文献   

13.
Summary Smooth muscle cells were cultured from pig aorta. Changes in both the growth and the properties of sulfated proteoglycans were observed during passage. The population doubling time during log phase growth was 34 h from Passages 3 to 7–8 but 20 h at the Passage 11, and the cell density at the stationary phase, was 86 000 and 136 000 cells/cm2 at Passages 3 and 11, respectively. Structural characteristics of sulfated proteoglycans secreted into the medium were investigated after metabolic labeling with [35S]-sulfate. Significant differences were observed with age in vitro: a) [35S]proteoglycan complexes were in a greater amount at Passage 10 than at Passage 3; b) the hydrodynamic size of at least 45% of subunits and about 90% of monomers decreased with in vitro aging; c) this decrease in the size of proteoglycans was partly due to a decrease in the size of their glycanic chains; d) an increase of 15% in the proportion of dermatan sulfate was observed when cells were subjected to 10 passages. This work was supported by grants from the Institut National de la Santé et de la Recherche Médicale (INSERM, U. 181) and the Fondation pour la Recherche Médicale.  相似文献   

14.
In this study, we investigated the effect of the extracellular matrix (ECM) secreted by vascular cells on proteoglycan (PG) synthesis by vascular smooth muscle cells in culture. PG synthesis of human aortic smooth muscle cells plated on plastic or the matrices derived from vascular endothelial cells, vascular smooth muscle cells, or THP-1 macrophages was characterized. Smooth muscle cell and macrophage matrices increased both secreted and cellular smooth muscle cells PG production by 2.5-fold to 3.9-fold, respectively, over plastic and endothelial cell matrix. Macrophage matrix was more potent than smooth muscle cell matrix in this regard. Selective enzymatic removal of chondroitin sulfates, collagen, and elastin from smooth muscle cell matrix enhanced the stimulation of PG synthesis, as did the removal of chondroitin sulfates from macrophage matrix. PG turnover rates were similar for smooth muscle cells plated on the three matrices. The newly synthesized PG from cultures plated on smooth muscle cell-, and macrophage-derived matrices had greater charge density, larger molecular size, and longer glycosaminoglycan chains than those from endothelial cell matrix cultures. These data show that the ECM plays a major role in modulating vascular smooth muscle cell PG metabolism in vitro.  相似文献   

15.
Insulin receptors could be demonstrated in cultured smooth muscle cells of rat aorta. The specific binding of 125I-insulin was time-, temperature- and pH-dependent. The optimal temperature for our studies was 12 degrees C. At this temperature maximal specific binding was 0.5% of total counts at 120 min incubation. The pH-optimum for the binding process was between 7.5 and 8. Degradation of 125I-insulin at 12 degrees C was 14%, no degradation of binding sites could be measured at this temperature. Dissociation of 125I-insulin was rapid. 50% of the labeled hormone remained associated with the cells. Half-maximal inhibition of 125I-insulin binding was produced by insulin at 4 X 10(-11) mol/l. Scatchard-analysis gave curvilinear plots, that may suggest negative cooperativity. Specificity of binding was studied in competition experiments between 125I-insulin, insulin, proinsulin, insulin-like growth factors and human growth hormone. Half-maximal inhibition of 125I-insulin binding was produced by proinsulin at 2 X 10(-9) mol/l and by insulin-like growth factors at 9 X 10(-9) mol/l. Human growth hormone had no significant effect on the insulin binding.  相似文献   

16.
Effect of trifluoperazine and colchicine on LDL-receptor synthesis in smooth muscle cells exposed to hypercholesterolemic medium in vitro have been studied. While trifluoperazine at 25 microM concentration caused stimulation of LDL-receptor synthesis, colchicine acted as a dose-dependent inhibitor of LDL-receptor synthesis. Thus calmodulin down regulates LDL-receptor synthesis independent of microtubular involvement.  相似文献   

17.
  • 1.1. Protein tyrosine kinase (PTK) activities were detected in both cytosolic and particulate fractions of cultured vascular smooth muscle cells by using poly (Glu: Tyr; 4:1) as an exogenous substrate.
  • 2.2. The percent distribution of the enzyme activity between these two fractions was 70 and 30 respectively.
  • 3.3. The particulate and not the cytosolic enzyme activity was stimulated by about 4-fold in the presence of non-ionic detergent, Triton X-100 (0.5% v/v).
  • 4.4. The PTK activity in both the fractions was absolutely dependent on the presence of divalent cations such as Mg2+ and Mn2+ which were equipotent in the activation of the enzyme.These data indicate that PTK activity is expressed in cultured VSMC and provide a basis for further studies to examine a possible role of PTKs in growth and proliferation of VSMC.
  相似文献   

18.
Smooth muscle cells (SMC) isolated from bovine aorta or human saphenous vein were cultured and used to study the putative effect of recombinant human tumor necrosis factor (TNF) on lipid metabolism in vascular cells. Addition of TNF to the culture medium for 24-48 h resulted in an increase of [3H]oleic acid uptake and esterification into lipids. The effect could be seen already with 0.3 ng/ml and was maximal with 30 ng/ml. The effect of TNF was mainly on the incorporation of [3H]oleic acid into triacylglycerol which increased by 140% in the bovine cells. There was also a significant increase in [3H]cholesteryl ester. In the human SMC there was a 40% increase in [3H]oleic acid into total lipids, while the rise in [3H]triacylglycerol ranged between 60-90%. TNF did not modulate cellular triacyglycerol synthesis in cultured mouse peritoneal macrophages. Since TNF was shown to be synthesized and secreted not only by macrophages but also by smooth muscle cells, it could play an autocrine role in lipid metabolism during development of atherosclerotic lesions. The cellular population of the lesions, i.e., predominance of macrophages or smooth muscle cells, could determine the relative proportion of triacylglycerol accumulation.  相似文献   

19.
Cultures of rabbit aortic smooth muscle (RSM) cells are a valuable model system for studying production and metabolism of connective tissue components. This report describes various assay procedures for lysyl oxidase, the enzyme responsible for deaminating lysine residues to give aldehyde cross-link precursors, in culture medium from these cells. Studies of the medium enzyme from second-passage RSM cells indicate that approximately 40% of the total enzyme activity in the flask of cells is in the medium. The medium enzyme levels are replenished quite rapidly following refeeding, and enzyme levels in the medium appear to be feedback controlled. The mechanism for this control is unknown at present. Multiple refeeding experiments in which the medium was changed every 2-4 h for up to 40 h indicate that these cells are cap]able of producing large amounts of enzyme and are capable of altering enzyme production and secretion quite rapidly in response to changes in their environment. Protein synthesis inhibitor studies with cycloheximide suggest that the major portion of the enzyme released into the medium following refeeding is newly synthesized although a pool of latent enzyme is also present. As in intact tissue, extraction of the enzyme from the cell layer requires strong denaturing reagents such as 4 M urea. These results suggest that the production of lysyl oxidase is closely regulated and is very responsive to changes in the external environment of the cells. This cell culture system appears to be an excellent one to study the production of lysyl oxidase and its role in connective tissue fibrillogenesis.  相似文献   

20.
Smooth muscle cells were enzymatically dispersed from vasa deferentia of adult male guinea pigs (250-400 g). These cells reassociated in vitro to form monolayers and small spherical reaggregates (0.05-0.3 mm in Diam). Within 48 h of being placed in culture, cells in both types of preparation began to contract spontaneously. The contractions were rhythmic and slow. Cells in the monolayers stopped contracting after approximately 1 wk in vitro, but the reaggregates continued to contract spontaneously for at least 3 wk. Electron microscopy of the reaggregates revealed the presence of thick and thin myofilaments. Overshooting action potentials were recorded in many of the cells penetrated (primarily in reaggregates), and were accompanied by visible contractions of the aggregate or monolayer. Quiescent cells could often be excited by intracellularly applied depolarizing and hyperpolarizing (anodal-break) current pulses. The resting potentials had a mean value of -58 +/- 2 mV. The action potentials were usually preceded by a spontaneous depolarization. The action potentials had slow rates of rise (1--4 V/s) which were unaffected by tetrodotoxin (TTX, 1 microgram/ml), a known blocker of fast Na+ -channels. Verapamil (1 microgram/ml) blocked the action potentials. The mean value of input resistance was 6.9 +/- 0.5 M omega (n = 12). These electrophysiological properties are similar to those of intact adult vas deferens smooth muscle cells. Thus, the cultured adult vas deferens smooth muscle cells retain their functional properties in vitro even after long periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号