首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In an attempt to clarify phylogenetic and genome relationships among 35 diploid (A and C genomes), 13 tetraploid (AB and AC genomes) and 6 hexaploid (ACD genome) Avena taxa, 71 clones of the ITS1-5.8S-ITS2 fragment were sequenced, aligned and a network was constructed. In addition, the intergenic spacer (IGS) fragment was fingerprinted by means of a RFLP analysis using three different restriction enzymes. Both approaches led to comparable results. Clustering among the 54 Avena sp. entries was according to karyotype. Major genic divergence between the A and C genomes was revealed, while distinction among the A and B/D genomes was not possible. High affinity among the AB genome tetraploids and the A(s) genome diploid A. lusitanica was found, while AC genome tetraploids and ACD hexaploids were highly affiliated with the A(l) genome diploid A. longiglumis. The possible role of A. longiglumis in Avena sp. evolution is discussed.  相似文献   

2.
Peng YY  Baum BR  Ren CZ  Jiang QT  Chen GY  Zheng YL  Wei YM 《Hereditas》2010,147(5):183-204
Ribosomal ITS sequences are commonly used for phylogenetic reconstruction because they are included in rDNA repeats, and these repeats often undergo rapid concerted evolution within and between arrays. Therefore, the rDNA ITS copies appear to be virtually identical and can sometimes be treated as a single gene. In this paper we examined ITS polymorphism within and among 13 diploid (A and C genomes), seven tetraploid (AB, AC and CC genomes) and four hexaploid (ACD genome) to infer the extent and direction of concerted evolution, and to reveal the phylogenetic and genome relationship among species of Avena. A total of 170 clones of the ITS1-5.8S-ITS2 fragment were sequenced to carry out haplotype and phylogenetic analysis. In addition, 111 Avena ITS sequences retrieved from GenBank were combined with 170 clones to construct a phylogeny and a network. We demonstrate the major divergence between the A and C genomes whereas the distinction among the A and B/D genomes was generally not possible. High affinity among the A(d) genome species A. damascena and the ACD genome species A. fatua was found, whereas the rest of the ACD genome hexaploids and the AACC tetraploids were highly affiliated with the A(l) genome diploid A. longiglumis. One of the AACC species A. murphyi showed the closest relationship with most of the hexaploid species. Both C(v) and C(p) genome species have been proposed as paternal donors of the C-genome carrying polyploids. Incomplete concerted evolution is responsible for the observed differences among different clones of a single Avena individual. The elimination of C-genome rRNA sequences and the resulting evolutionary inference of hexaploid species are discussed.  相似文献   

3.
Species and genome relationships among 11 diploid (A and C genomes), five tetraploid (AB and AC genomes) and two hexaploid (ACD genome) Avena taxa were investigated using amplified fragment length polymorphisms (AFLPs) and random amplified polymorphic DNA (RAPD) markers. The two primer pairs used for the AFLP reactions produced a total of 354 polymorphic bands, while 187 reproducible bands were generated using ten RAPD primers. Genetic similarities amongst the entries were estimated using the Jaccard and Dice algorithms, and cluster analyses were performed using UPGMA and neighbor joining methods. Principle coordinate analysis was also applied. The highest cophenetic correlation coefficient was obtained for the Jaccard algorithm and UPGMA clustering method (r=0.99 for AFLP and r=0.94 for RAPD). No major clustering differences were present between phenograms produced with AFLPs and RAPDs. Furthermore, data produced with AFLPs and RAPDs were highly correlated (r=0.92), indicating the reliability of our results. All A genome diploid taxa are clustered together according to their karyotype. The AB genome tetraploids were found to form a subcluster within the As genome diploids (AFLPs), indicating their near-autoploid origin. The AC genome tetraploids are clustered to the ACD genome hexaploids. Finally, the C genome diploids form an outer branch, indicating the major genomic divergence between the A and C genomes in Avena.Communicated by J.S. Heslop-Harrison  相似文献   

4.
C Linares  A Serna  A Fominaya 《Génome》1999,42(4):706-713
A repetitive sequence, pAs17, was isolated from Avena strigosa (As genome) and characterized. The insert was 646 bp in length and showed 54% AT content. Databank searches revealed its high homology to the long terminal repeat (LTR) sequences of the specific family of Ty1-copia retrotransposons represented by WIS2-1A and Bare. It was also found to be 70% identical to the LTR domain of the WIS2-1A retroelement of wheat and 67% identical to the Bare-1 retroelement of barley. Southern hybridizations of pAs17 to diploid (A or C genomes), tetraploid (AC genomes), and hexaploid (ACD genomes) oat species revealed that it was absent in the C diploid species. Slot-blot analysis suggested that both diploid and tetraploid oat species contained 1.3 x 10(4) copies, indicating that they are a component of the A-genome chromosomes. The hexaploid species contained 2.4 x 10(4) copies, indicating that they are a component of both A- and D-genome chromosomes. This was confirmed by fluorescent in situ hybridization analyses using pAs17, two ribosomal sequences, and a C-genome specific sequence as probes. Further, the chromosomes involved in three C-A and three C-D intergenomic translocations in Avena murphyi (AC genomes) and Avena sativa cv. Extra Klock (ACD genomes), respectively, were identified. Based on its physical distribution and Southern hybridization patterns, a parental retrotransposon represented by pAs17 appears to have been active at least once during the evolution of the A genome in species of the Avena genus.  相似文献   

5.
Four anonymous non-coding sequences were isolated from an Avena strigosa (A genome) genomic library and subsequently characterized. These sequences, designated As14, As121, As93 and As111, were 639, 730, 668, and 619 bp long respectively, and showed different patterns of distribution in diploid and polyploid Avena species. Southern hybridization showed that sequences with homology to sequences As14 and As121 were dispersed throughout the genome of diploid (A genome), tetraploid (AC genomes) and hexaploid (ACD genomes) Avena species but were absent in the C-genome diploid species. In contrast, sequences homologous to sequences As93 and As111 were found in diploid (A and C genomes), tetraploid (AC genomes) and hexaploid (ACD genomes) species. The chromosomal locations of the 4 sequences in hexaploid oat species were determined by fluorescent in situ hybridization and found to be distributed over the length of the 28 chromosomes (except in the telomeric regions) of the A and D genomes. Furthermore, 2 C-genome chromosome pairs with the As14 sequence, and 4 with As121, were discovered to beinvolved in intergenomic translocations. These chromosomes were identified as 1C, 2C, 4C and 16C by combining the As14 or As121 sequences with two ribosomal sequences and a C-genome-specific sequence as probes in fluorescence in situ hybridization. These sequences offer new tools for analyzing possible intergenomic translocations in other hexaploid oat species. Received: 8 April 1999 / Accepted: 30 July 1999  相似文献   

6.
The development and application of molecular methods in oats has been relatively slow compared with other crops. Results from the previous analyses have left many questions concerning species evolutionary relationships unanswered, especially regarding the origins of the B and D genomes, which are only known to be present in polyploid oat species. To investigate the species and genome relationships in genus Avena, among 13 diploid (A and C genomes), we used the second intron of the nuclear gene FLORICAULA/LEAFY (FL int2) in seven tetraploid (AB and AC genomes), and five hexaploid (ACD genome) species. The Avena FL int2 is rather long, and high levels of variation in length and sequence composition were found. Evidence for more than one copy of the FL int2 sequence was obtained for both the A and C genome groups, and the degree of divergence of the A genome copies was greater than that observed within the C genome sequences. Phylogenetic analysis of the FL int2 sequences resulted in topologies that contained four major groups; these groups reemphasize the major genomic divergence between the A and C genomes, and the close relationship among the A, B, and D genomes. However, the D genome in hexaploids more likely originated from a C genome diploid rather than the generally believed A genome, and the C genome diploid A. clauda may have played an important role in the origination of both the C and D genome in polyploids.  相似文献   

7.
The DNA sequence of an extracellular (EXC) domain of an oat (Avena sativa L.) receptor-like kinase (ALrk10) gene was amplified from 23 accessions of 15 Avena species (6 diploid, 6 tetraploid, and 3 hexaploid). Primers were designed from one partial oat ALrk10 clone that had been used to map the gene in hexaploid oat to linkage groups syntenic to Triticeae chromosome 1 and 3. Cluster (phylogenetic) analyses showed that all of the oat DNA sequences amplified with these primers are orthologous to the wheat and barley sequences that are located on chromosome 1 of the Triticeae species. Triticeae chromosome 3 Lrk10 sequences were not amplified using these primers. Cluster analyses provided evidence for multiple copies at a locus. The analysis divided the ALrk EXC sequences into two groups, one of which included AA and AABB genome species and the other CC, AACC, and CCCC genome species. Both groups of sequences were found in hexaploid AACCDD genome species, but not in all accessions. The C genome group was divided into 3 subgroups: (i) the CC diploids and the perennial autotetraploid, Avena macrostachya (this supports other evidence for the presence of the C in this autotetraploid species); (ii) a sequence from Avena maroccana and Avena murphyi and several sequences from different accessions of A. sativa; and (iii) A. murphyi and sequences from A. sativa and Avena sterilis. This suggests a possible polyphyletic origin for A. sativa from the AACC progenitor tetraploids or an origin from a progenitor of the AACC tetraploids. The sequences of the A genome group were not as clearly divided into subgroups. Although a group of sequences from the accession 'SunII' and a sequence from line Pg3, are clearly different from the others, the A genome diploid sequences were interspersed with tetraploid and hexaploid sequences.  相似文献   

8.
The diploid oat species containing the A genome of two types (Al and Ac) were studied by electrophoresis of grain storage proteins (avenins), chromosome C-banding, and in situ hybridization with probes pTa71 and pTa794. The karyotypes of the studied species displayed similar C-banding patterns but differed in size and morphology of several chromosomes, presumably, resulting from structural rearrangements that took place during the divergence of A genomes from a common ancestor. In situ hybridization demonstrated an identical location of the 45S and 5S rRNA gene loci in Avena canariensis and A. longiglumis similar to that in the A. strigosa genome. However, the 5S rDNA locus in A. longiglumis (5S rDNA1) was considerably decreased in the chromosome 3A1 long arm. The analysis demonstrated that these oat species were similar in the avenin component composition, although individual accessions differed in the electrophoretic mobilities of certain components. A considerable similarity of A. canariensis and A. longiglumis to the Avena diploid species carrying the As genome variant was demonstrated.  相似文献   

9.
E N Jellen  R L Phillips  H W Rines 《Génome》1993,36(6):1129-1137
A chromosome C-banding protocol using Wright's stain was employed to compare chromosomes in cultivars and wild accessions of several hexaploid oat taxa (Avena spp.). This technique permits the identification of each of the 21 somatic hexaploid oat chromosomes. Digital images of C-banded cells were captured on computer and used to construct karyotypes of several oat accessions. Polymorphisms for C-bands among oat cultivars and wild accessions are described. These banding polymorphisms can be used to trace introgression of chromosomes from wild sources and to provide physical markers on the genetic map for oat. Although C-banding permits the identification of likely C-genome chromosomes based on comparisons with C-banding patterns in diploid and tetraploid Avena species, the A and D genomes cannot be readily differentiated based on their banding patterns.  相似文献   

10.
燕麦具有较高的营养价值和保健功能,是一种可用于均衡营养、科学饮食的健康食品,正逐渐受到人们的青睐和认可.基因组学研究有助于燕麦重要农艺性状的定位和克隆,对开发利用燕麦优质种质资源具有重要意义.本文从以下几个方面对燕麦基因组学研究进展进行综述:(1)燕麦属基因组类型、大小及染色体倍性研究;(2)基于多种分子标记手段构建燕...  相似文献   

11.
The molecular diversity of the rDNA sequences (5S rDNA units) in 71 accessions from 26 taxa of Avena was evaluated. The analyses, based on 553 sequenced clones, indicated that there were 6 unit classes, named according to the haplomes (genomes) they putatively represent, namely the long A1, long B1, long M1, short C1, short D1, and short M1 unit classes. The long and short M1 unit classes were found in the tetraploid A. macrostachya, the only perennial species. The long M1 unit class was closely related to the short C1 unit class, while the short M1 unit class was closely related to the long A1 and long B1 unit classes. However, the short D1 unit class was more divergent from the other unit classes. There was only one unit class per haplome in Avena, whereas haplomes in the Triticeae often have two. Most of the sequences captured belonged to the long A1 unit class. Sequences identified as the long B1 unit class were found in the tetraploids A. abyssinica and A. vaviloviana and the diploids A. atlantica and A. longiglumis. The short C1 unit class was found in the diploid species carrying the C genome, i.e., A. clauda, A. eriantha, and A. ventricosa, and also in the diploid A. longiglumis, the tetraploids A. insularis and A. maroccana, and all the hexaploid species. The short D1 unit class was found in all the hexaploid species and two clones of A. clauda. It is noteworthy that in previous studies the B genome was found only in tetraploid species and the D genome only in hexaploid species. Unexpectedly, we found that various diploid Avena species contained the B1 and D1 units. The long B1 unit class was found in 3 accessions of the diploid A. atlantica (CN25849, CN25864, and CN25887) collected in Morocco and in 2 accessions of A. longiglumis (CIav9087 and CIav9089) collected in Algeria and Libya, respectively, whereas only 1 clone of A. clauda (CN21378) had the short D1 unit. Thus there might be a clue as to where to search for diploids carrying the B and D genomes. Avena longiglumis was found to be the most diverse species, possibly harboring the A, B, and C haplomes. The long M1 and short M1 are the unit classes typical of A. macrostachya. These results could explain the roles of A. clauda, A. longiglumis, and A. atlantica in the evolution of the genus Avena. Furthermore, one clone of the tetraploid A. murphyi was found to have sequences belonging to the short D1 unit class, which could indicate that A. murphyi might have been the progenitor of hexaploid oats and not, as postulated earlier, A. insularis. The evolution of Avena did not follow the molecular clock. The path inferred is that the C genome is more ancient than the A and B genomes and closer to the genome of A. macrostachya, the only existing perennial, which is presumed to be the most ancestral species in the genus.  相似文献   

12.
为拓展分子标记在燕麦种质资源分析与鉴定中的应用,利用公共数据库中的25376条EST(expressed sequence tags)序列,开展了燕麦EST-SSR功能性标记的开发和利用研究。25376条EST序列经拼接去冗余后获得了11618条序列,从中筛选出含有不同重复基元的SSR且重复次数较多、长度较长的556条EST序列进行引物设计,开发了50对燕麦EST-SSR引物,通过筛选得到40对有效的EST-SSR引物。选取其中4对引物对5个燕麦种质资源进行了PCR扩增及产物测序,结果表明扩增条带多态性是由SSR差异造成的。利用40对ESTSSR引物对15个六倍体燕麦种质资源进行遗传多样性分析,共扩增出89个等位基因,平均每对引物产生2.23个等位基因;UPGMA聚类分析表明,15个六倍体燕麦种质资源在Dice系数为0.93处聚为3支,基本上是按照不同种进行聚类的,在相同种中又根据地理来源分别聚集成支。利用40对EST-SSR引物对31个遗传背景不清的燕麦种质资源进行基因组倍性鉴定,发现这些种质中可能存在有四倍体和二倍体的燕麦新资源。本研究开发的燕麦EST-SSR功能性标记将在燕麦遗传多样性分析、遗传图谱构建及燕麦属内种间基因组鉴定等方面发挥重要作用。  相似文献   

13.
Clarification of relationships among ploidy series of Cynodon accessions could be beneficial to bermudagrass breeding programs, and would enhance our understanding of the evolutionary biology of this warm season grass species. This study was initiated to elucidate polyploidization among Cynodon accessions with different ploidy series collected from Turkey based on chloroplast and nuclear DNA. Forty Cynodon accessions including 7 diploids, 3 triploids, 10 tetraploids, 11 pentaploids, and 9 hexaploids were analyzed using chloroplast DNA restriction fragment-length polymorphism (cpDNA RFLP), chloroplast DNA simple sequence repeat (cpDNA SSR), and nuclear DNA markers based on neighbor-joining (NJ) and principle component analyses (PCA). All three-marker systems with two statistical algorithms clustered the diploids apart from the other ploidy levels. Assuming autopolyploidy, spontaneous polyploidization followed by rapid diversification among the higher ploidy levels than the diploids is likely in Cynodon's evolution. Few tetraploid and hexaploid accessions were clustered with or closely to the group of diploids, supporting the hypothesis above. Eleven haplotypes as estimated by cpDNA RFLP and SSR markers were detected. This study indicated that the diploids had different organelle genome from the rest of the ploidy series and provided valuable insight into relationships among ploidy series of Cynodon accessions based on cp and nuclear DNAs.  相似文献   

14.
The diploid oat species containing the A genome of two types (Al and Ac) were studied by electrophoresis of grain storage proteins (avenins), chromosome C-banding, and in situ hybridization with probes pTa71 and pTa794. The karyotypes of the studied species displayed similar C-banding patterns but differed in size and morphology of several chromosomes, presumably, resulting from structural rearrangements that took place during the divergence of A genomes from a common ancestor. In situ hybridization demonstrated an identical location of the 45S and 5S rRNA gene loci in Avena canariensis and A. longiglumis similar to that in the A. strigosa genome. However, the 5S rDNA locus in A. longiglumis (5S rDNA1) was considerably decreased in the chromosome 3Al long arm. The analysis demonstrated that these oat species were similar in the avenin component composition, although individual accessions differed in the electrophoretic mobilities of certain components. A considerable similarity of A. canariensis and A. longiglumis to the Avena diploid species carrying the As genome variant was demonstrated.  相似文献   

15.
C Linares  Y Loarce  A Serna  A Fominaya 《Chromosoma》2001,110(2):115-123
Two repetitive sequences, As32 and As22, of 826 and 742 bp, respectively, were isolated from Avena strigosa (As genome). Databank searches revealed their high homology to different segments of the family of Ty1-copia retrotransposons. Southern hybridization showed them to be present in diploid and polyploid oat species. Polymerase chain reaction with primers designed to amplify the segment between them showed that As32 and As22 sequences are composed of two different Ty1-copia retrotransposons. The segment amplified from the pAs32 insert was 2,264 bp long and contained the entire GAG and AP domains, and more than half of the IN domain. This new element has been designated TAS-1 (transposon, A. strigosa, 1) and appears to contain a long open reading frame that encodes a polypeptide of 625 amino acids. Slot-blot and fluorescence in situ hybridization analyses revealed it to be a component of both A- and D-genome chromosomes. Further, the chromosomes involved in one C-A intergenomic translocation in A. murphyi (AC genomes), one C-D intergenomic translocation in A. byzantina cv. Kanota (ACD genomes), and two C-D intergenomic translocations in A. sativa cv. Extra Klock, were identified. Based on its physical distribution and Southern hybridization pattern, a parental retro-transposon represented by TAS-1 appears to have been active at least twice during the evolution of the genomes in species of Avena.  相似文献   

16.
Thirty-four fluorescently labeled microsatellite markers were used to assess genetic diversity in a set of 30 Coffea accessions from the CENICAFE germplasm bank in Colombia. The plant material included one sample per accession of seven East African accessions representing five diploid species and 23 wild and cultivated tetraploid accessions of Coffea arabica from Africa, Indonesia, and South America. More allelic diversity was detected among the five diploid species than among the 23 tetraploid genotypes. The diploid species averaged 3.6 alleles/locus and had an average polymorphism information content (PIC) value of 0.6, whereas the wild tetraploids averaged 2.5 alleles/locus and had an average PIC value of 0.3 and the cultivated tetraploids (C. arabica cultivars) averaged 1.9 alleles/locus and had an average PIC value of 0.22. Fifty-five percent of the alleles found in the wild tetraploids were not shared with cultivated C. arabica genotypes, supporting the idea that the wild tetraploid ancestors from Ethiopia could be used productively as a source of novel genetic variation to expand the gene pool of elite C. arabica germplasm.  相似文献   

17.
The C-banding technique was used to describe the chromosomes of a relatively recently-discovered Moroccan oat species, Avena agadiriana (2n=4x=28). A substantial amount of polymorphism for arm ratios and C-banding patterns was observed among five accessions of this species. However a common set of ten putatively homologous chromosomes was identifiable among the five accessions. The chromosomes of A. Agadiriana do not closely match those of any of the previously described diploid or tetraploid oat species in terms of their arm ratios and C-banding patterns. However, their overall C-banded appearance generally resembles the A/B/D groups of chromosomes of Avena species, rather than the more hetrochromatic C genomes. Implications of these findings in terms of chromosome evolution in the genus Avena are discussed.Contribution no. 95-490-J of the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS, USA  相似文献   

18.
Genomic in situ hybridization in Avena sativa.   总被引:9,自引:0,他引:9  
Q Chen  K Armstrong 《Génome》1994,37(4):607-612
Genomic fluorescent in situ hybridization was employed in the study of the genome organization and evolution of hexaploid oat (Avena sativa L. cv. Sun II, AACCDD, 2n = 6x = 42). Genomic DNAs from two diploid oat species, Avena strigosa (genomic constitution AsAs, 2n = 14) and Avena pilosa (genomic constitution CpCp, 2n = 14), were used as probes in the study. The DNA from A. strigosa labelled 28 of the 42 (2/3) chromosomes of the hexaploid oat, while 14 of the 42 (1/3) chromosomes were labelled with A. pilosa DNA, indicating a close relationship between the A and D genomes. Results also suggested that at least 18 chromosomes (9 pairs) were involved in intergenomic interchanges between the A and C genomes.  相似文献   

19.
中国燕麦种质资源国外引种与利用   总被引:3,自引:0,他引:3  
综述了中国从国外引进燕麦种质资源及其利用情况。经过长期努力,中国从28个国家引进29个物种的燕麦种质资源共计2099份,大大增加了中国燕麦种质资源的数量,丰富了中国保存燕麦种质资源的物种和遗传多样性。与此同时,利用国外燕麦种质资源改良和培育出了一批优良品种,极大地提高了中国燕麦生产水平。利用引进的燕麦野生资源,开展了燕麦种质创新、起源进化和遗传学研究,取得了显著进展。建议继续加强国外燕麦种质资源的引进,对野生燕麦进行深入鉴定评价和利用,同时加强燕麦种质资源国际合作研究。  相似文献   

20.
Q Yang  L Hanson  M D Bennett  I J Leitch 《Génome》1999,42(3):512-518
Allohexaploid wild oat, Avena fatua L. (Poaceae; 2n = 6x = 42), is one of the world's worst weeds, yet unlike some of the other Avena hexaploids, its genomic structure has been relatively little researched. Consequently, in situ hybridisation was carried out on one accession of A. fatua using an 18S-25S ribosomal DNA (rDNA) sequence and genomic DNA from A. strigosa (AA-genome diploid) and A. clauda (CC-genome diploid) as probes. Comparing these results with those for other hexaploids studied previously: (i) confirmed that the genomic composition of A. fatua was similar to the other hexaploid Avena taxa (i.e., AACCDD), (ii) identified major sites of rDNA on three pairs of A/D-genome chromosomes, in common with other Avena hexaploids, and (iii) revealed eight chromosome pairs carrying intergenomic translocations between the A/D- and C-genomes in the accession studied. Based on karyotype structure, the identity of some of these recombinant chromosomes was proposed, and this showed that some of these could be divided into two types, (i) those common to all hexaploid Avena species analysed (3 translocations) and (ii) one translocation in this A. fatua accession not previously observed in reports on other hexaploid Avena species. If this translocation is found to be unique to A. fatua, then this information, combined with more traditional morphological data, will add support to the view that A. fatua is genetically distinct from other hexaploid Avena species and thus should retain its full specific status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号