首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholamban (PLB) is a small hydrophobic protein that regulates contractility in the heart. This membrane protein expressed in bacterial cells is resistant to purification by conventional strategies that have been used to isolate expressed soluble proteins. Therefore, in order to obtain both wild-type and mutant PLB proteins, we have amplified the PLB gene by the polymerase chain reaction from genomic DNA of porcine heart and inserted it into the pGEX-2T plasmid expression vector. In this vector, the gene product fused to glutathioneS-transferase has been expressed in JM109Escherichia colicells. The expressed fusion protein was found associated predominantly with insoluble cellular constituents. However, most of the fusion protein was readily extracted with SDS. PLB was subsequently purified by a simple procedure consisting of isolation of the fusion protein by preparative SDS–gel electrophoresis, followed by a second electrophoretic separation of PLB after its cleavage from the fusion protein by thrombin. This isolation method yields 3–4 mg of PLB per liter of cells, in a form which is capable of functional interaction with the Ca-ATPase in reconstituted proteoliposomes.  相似文献   

2.
The CD44 molecule is a widely distributed cell surface receptor for the extracellular matrix glycosaminoglycan hyaluronan. The ligand-binding site which is located in the membrane distal portion of the molecule encompasses a region of approximately 100 amino acids termed the Link domain, a structural unit that is conserved among members of the Hyaladherin superfamily which includes cartilage link protein, aggrecan, and tumor necrosis factor-stimulated gene-6 (TSG-6). In contrast to these other Hyaladherins, however, the ligand-binding domain of CD44 appears to extend beyond the Link domain to involve additional basic residues located toward the membrane proximal region. Furthermore, recent molecular modeling studies indicate that within the CD44 Link domain itself, the spatial arrangement of critical residues involved in HA binding is likely to differ significantly from the prototypic TSG-6 Link module. In order to obtain material to solve the CD44 solution structure we have developed an optimized method for the expression and purification of functionally active CD44 ectodomains encompassing both the Link module and the additional downstream HA-binding residues inEscherichia coli.Here we describe the details of the method which involves solubilization of recombinant CD44 from inclusion bodies in 8 M urea, followed by refolding and purification of intact monomers using size-exclusion and reverse-phase chromatography. We show the method yields CD44 molecules that (1) retain reactivity with a panel of conformation-sensitive antibodies, (2) possess similar hyaluronan-binding characteristics to authentically folded CD44 molecules expressed in eukaryotic cells, and (3) display one-dimensional NMR spectra that indicate the presence of a single conformational species. This method should enable sufficient amounts of functional CD44 Link module to be produced for comprehensive structural analyses by multidimensional NMR spectroscopy.  相似文献   

3.
Summary A uracilless strain ofE. coli upon starvation for uracil adapts to synthesize this compound. These adaptations are of two sorts, heritable and non-heritable. The latter are induced by the presence of thymine although little or none of the uracil is synthesized by the demethylation of thymine. The non-heritable adaptations arise in a discontinuous fashion at a rate 10 times as high as the genetic reversions. The non-heritable uracil-independent cells are considered to be phenocopies because they mimic the phenotype of the genetic revertants.With 2 Figures in the TextThis research was supported in part, by grants from the American Cancer Society, the U. S. Public Health Service and the National Science Foundation.  相似文献   

4.
Summary Plasmids of three different sizes, designated as plasmid A (mw: 65×106), plasmid B (mw: 41×106) and plasmid C (mw: 32×106) respectively, have been isolated from various hemolytic wild-type strains ofE. coli. DNA-DNA hybridization was performed to determine their relationship. The wild-type strain, PM167a, harbours plasmids of all three sizes. Hybridization studies indicate that all three plasmids share extented sequence homologies but that plasmid A is not composed of plasmids B and C. Hybridization between plasmids of the donor strain and those of appropriate transconjugants demonstrates that in some cases plasmids with identical size are not longer completely homologous in their nucleotide sequences. This indicates that despite their defined sizes these plasmids are not stable genetic entities, but rather they undergo frequently recombination and dissociation during conjugation. In one particular transconjugant strain, K12-PM152/1, a plasmid D was found which is a stable recombined molecule of plasmids B and C of the original strain. Plasmids of size B found as the only extrachromosomal elements in a hemolytic wild-type strain (P224) and two transconjugant strains (e.g. K12-CM20 and K12-PM167/1) share extended nucleotide sequence homologies but are not identical. Little sequence homology was observed between two different hemolytic plasmids and the F and the Col Ib plasmids suggesting that the former do not belong to either the F-like or the I-like group of plasmids. Another hemolytic plasmid is F-like based on its sequence homologies with the F factor.  相似文献   

5.
A novel approach for the preparation of recombinant human glucagon was described. An expression vector pAGluT, containing phoA promoter, phoA signal peptide and glucagon gene, was constructed by means of genetic engineering.Escherichia coli strain YK537 was transformed with pAGluT. High-level secretory expression of recombinant human glucagon was achieved. The expression yield of recombinant human glucagon was found to be 80 mg/L, approximately 30% of the total proteins in supernatant. The biological activities and the physicochemical properties of the purified recombinant human glucagon were found to be the same as that of native glucagon. In addition, our results suggested that phoA expression system may be suitable for the expression of other small peptides.  相似文献   

6.
7.
Summary Episomes ofE. coli K12, which coverthrleu region of the chromosome, were transferred toSerratia marcescens. Ribosomal proteins from these hybrid strains were analyzed with phosphocellulose column chromatography. TwoE. coli 30S ribosomal proteins, S2 and S20, could be detected in the ribosome of the hybrid strain in addition to all ribosomal proteins ofS. marcescens.  相似文献   

8.
The ability of the bacterial transposon Tn5 to undergo sequence inversion in Rec+ Escherichia coli cells as a result of recombination between its duplicated IS50 elements was examined using specially designed plasmid constructs. Surprisingly, recombination events in the IS50 elements that led to crossover and therefore Tn5 inversion could be detected at a frequency of only 10–5. This was approximately an order of magnitude lower than the frequency of IS50 recombination that led to conversion events (i.e. non-reciprocal recombination) without crossover, and at least two orders of magnitude lower than the frequency of intermolecular recombination between IS50 elements on two different plasmids. These rare conversion and inversion events in Tn5 appeared to be due to intramolecular recombination and not simply to multiple rounds of reciprocal crossing over, since the heterodimeric intermediates that would be generated during the latter process could be readily isolated but were shown to yield a completely different set of plasmid products upon resolution.  相似文献   

9.
Summary A recombinant cosmid carrying the sucrase gene (sacA) was obtained from a colony bank ofE. coli harboring recombinant cosmids representative of theB. subtilis genome. It was shown that thesacA gene is located in a 2 kbEcoRI fragment and that the cloned sequence is homologous to the corresponding chromosomal DNA fragment. A fragment of 2 kb containing the gene was subcloned in both orientations in the bifunctional vector pHV33 and expression was further looked for inB. subtilis andE. coli. Complementation of asacA mutation was observed in Rec+ and Rec- strains ofB. subtilis. Expression of sucrase was also demonstrated inE.coli, which is normally devoid of this activity, by SDS-polyacrylamide gel electrophoresis, specific immunoprecipitation and assay of the enzyme in crude extracts. The specific activity of the enzyme depended on the orientation of the inserted fragment. The saccharolytic activity was found to be cryptic inE. coli since the presence of the recombinant plasmids did not allow the transport of [U14C] sucrose and the growth of the cells.It was shown also that the recombinant cosmid contained part of the neighboring locus (sacP) which corresponds to a component of the PEP-dependent phosphotransferase system of sucrose transport ofB. subtilis.  相似文献   

10.
11.
It has been suggested that two groups ofEscherichia coli genes, theccm genes located in the 47-min region and thenrfEFG genes in the 92-min region of the chromosome, are involved in cytochromec biosynthesis during anaerobic growth. The involvement of the products of these genes in cytochromec synthesis, assembly and secretion has now been investigated. Despite their similarity to other bacterial cytochromec assembly proteins, NrfE, F and G were found not to be required for the biosynthesis of any of thec-type cytochromes inE. coli. Furthermore, these proteins were not required for the secretion of the periplasmic cytochromes, cytochromec 550 and cytochromec 552, or for the correct targeting of the NapC and NrfB cytochromes to the cytoplasmic membrane. NrfE and NrfG are required for formate-dependent nitrite reduction (the Nrf pathway), which involves at least twoc-type cytochromes, cytochromec 552 and NrfB, but NrfF is not essential for this pathway. Genes similar tonrfE, nrfF andnrfG are present in theE. coli nap-ccm locus at minute 47. CcmF is similar to NrfE, the N-terminal region of CcmH is similar to NrfF and the C-terminal portion of CcmH is similar to NrfG. In contrast to NrfF, the N-terminal, NrfF-like portion of CcmH is essential for the synthesis of allc-type cytochromes. Conversely, the NrfG-like C-terminal region of CcmH is not essential for cytochromec biosynthesis. The data are consistent with proposals from this and other laboratories that CcmF and CcmH form part of a haem lyase complex required to attach haemc to C-X-X-C-H haem-binding domains. In contrast, NrfE and NrfG are proposed to fulfill a more specialised role in the assembly of the formate-dependent nitrite reductase.  相似文献   

12.
The fragile histidine triad (Fhit) protein is a homodimeric protein with diadenosine 5′,5-P1,P3-triphosphate (Ap3A) asymmetrical hydrolase activity. We have cloned the human cDNA Fhit in the pPROEX-1 vector and expressed with high yield in Escherichia coli with the sequence Met-Gly-His6-Asp-Tyr-Asp-Ile-Pro-Thr-Thr followed by a rTEV protease cleavage site, denoted as “H6TV,” fused to the N-terminus of Fhit. Expression of H6TV–Fhit in BL21(DE3) cells for 3 h at 37°C produced 30 mg of H6TV–Fhit from 1 L of cell culture (4 g of cells). The H6TV–Fhit protein was purified to homogeneity in a single step, with a yield of 80%, using nickel-nitrilotriacetate resin and imidazole buffer as eluting agent. Incubation of H6TV–Fhit with rTEV protease at 4°C for 24 h resulted in complete cleavage of the H6TV peptide. There were no unspecific cleavage products. The purified Fhit protein could be stored for 3 weeks at 4°C without loss of activity. The pure protein was stable at −20°C for at least 18 months when stored in buffer containing 25% glycerol. Purified Fhit was highly active, with a Km value for Ap3A of 0.9 μM and a kcat(monomer) value of 7.2 ± 1.6 s−1 (n = 5). The catalytic properties of unconjugated Fhit protein and the H6TV–Fhit fusion protein were essentially identical. This indicates that the 24-amino-acid peptide containing the six histidines fused to the N-terminus of Fhit does not interfere in forming the active homodimers or in the binding of Ap3A.  相似文献   

13.
14.
15.
The region ofBacteroides fragilis DNA on the recombinant plasmid pMT100 responsible for conferring metronidazole resistance inEscherichia coli strains was characterized. An open reading frame (ORF1) of 195 bp encoded a protein of 64 amino acids with a predicted Mr, of 7.3 kDa. Deletion analysis indicated that ORF1 conferred the metronidazole resistance phenotype and encoded a protein with an apparent Mr of approximately 8–10 kDa.  相似文献   

16.
Summary In conjugation with donor strains carrying proximal F merogenotes of KLF-1 type about 100-fold lower frequency ofLeu + orLac + recombinants was found. The determination of the level of β-galactosidase synthesis during the initial period of mating indicated that the transfer process of plasmid DNA was not impaired. Among the recombinants selected a large fraction have not expressed the plasmic fertility functions. This phenomenon was found to be replicon specific and was observed only with proximal F merogenotes but not with classical F'lac and F'ORF-1 elements or RI-19 plasmid. The expression of KLF-1 plasmid functions in the cell seems to be affected by a chromosomal gene of the proximal F merogenote closely linked toleu marker.  相似文献   

17.
18.
19.
A system is described that enables the cloning of genes specifying detrimental proteins inEscherichia coli. The system is based on pUC plasmids and was developed for the expression of theBacillus subtilis csaA gene, which is lethal when expressed at high levels. Suppressor strains that tolerate the presence of plasmids for high-level expression ofcsaA were isolated, which contained small cryptic deletion variants of the parental plasmid in high copy numbers. The cryptic plasmids consisted mainly of the pUC replication functions and lacked thecsaA region and selectable markers. The co-resident, incompatible, cryptic plasmids enabled the maintenance of thecsaA plasmids by reducing their copy number 20-fold, which resulted in a concomitant 3- to 7-fold reduction in the expression of plasmid-encoded genes. Strains carrying these cryptic endogenous plasmids proved to be useful for the construction of pUC-based recombinant plasmids carrying other genes, such as theskc gene ofStreptococcus equisimilis, which cannot be cloned in high copy numbers inE. coli. Several strategies to reduce production levels of heterologous proteins specified by plasmids are compared.  相似文献   

20.
We have previously reported that the MukB protein is essential for chromosome partitioning inEscherichia coli and thatmukB mutants produce anucleate cells and are temperature-sensitive for colony formation. ThemukB gene maps at 21 min on theE. coli chromosome andsmtA-mukF-mukE-mukB genes might comprise an operon, which is transcribed in a clockwise direction. Here, we report thatmukF andmukE null mutants are both temperature-sensitive for colony formation and produce anucleate cells even at the permissive temperature. These phenotypes are the same as those observed in themukB null mutant. The primary sequence of MukF includes a leucine zipper structure and an acidic domain. Mutational analysis revealed that both are required for MukF function. When the MukF protein was overproduced in the wild-type strain, anucleate cells were produced. In contrast, overproduction of either MukE or MukB did not cause the defect. In null mutants for themukF, mukE, andmukB genes, the synchronous initiation of chromosome replication was not affected. The mini-F plasmid was as stably maintained in these mutants as in the wild-type strain. These results indicate that the MukF, MukE, and MukB proteins are involved in the chromosome partitioning steps, but are not required for mini-F plasmid partitioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号