首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A V79 Chinese hamster cell line was constructed for stable expression of mouse cytochrome P450 2e1 (Cyp2e1), as an addition to the existing cell battery consisting of cell lines stably expressing rat CYP2E1 and human CYP2E1 (V79 Cell Battery). The aim was to establish a cell battery that offers the in vitro possibility of investigating species-specific differences in the toxicity and metabolism of chemicals representing substrates for CYP2E1. The newly established cell line (V79m2E1) effectively expressed Cyp2e1 in the catalytically active form. The expression of catalytically active CYP2E1 in V79m2E1 cells was maintained over several months in culture, as demonstrated by Western Blotting and chlorzoxazone (CLX) 6-hydroxylase activity. The cells exhibited CLX 6-hydroxylase activity with a Km of 27.8 microM/l and Vmax of 40 pmol/mg protein/minute, compared with a Km of 28.2/28.6 microM/l and a Vmax of 130/60 pmol/mg protein/minute from V79r2E1/V79h2E1 cells. Furthermore, the CYP2E1-dependent mutagenicity of N-nitrosodimethylamine could be demonstrated in the V79m2E1 cells. Therefore, the new cell battery permits the interspecies comparison of CYP2E1-dependent toxicity and of metabolism of chemicals between humans and the two major rodent species--the rat and the mouse--that are usually used in classical toxicity studies.  相似文献   

2.
Cytochrome P450 2E1 (CYP2E1) is an enzyme of major toxicological interest because it metabolizes various drugs, precarcinogens and solvents to reactive metabolites. In this study, human and cynomolgus monkey CYP2E1 cDNAs (humCYP2E1 and monCYP2E1, respectively) were cloned, and the corresponding proteins were heterologously expressed in yeast cells to identify the functions of primate CYP2E1s. The enzymatic properties of CYP2E1 proteins were characterized by kinetic analysis of chlorzoxazone 6-hydroxylation and 4-nitrophenol 2-hydroxylation. humCYP2E1 and monCYP2E1 enzymes showed 94.3% identity in their amino acid sequences. The functional CYP content in yeast cell microsomes expressing humCYP2E1 was 38.4 pmol/mg protein. The level of monCYP2E1 was 42.7% of that of humCYP2E1, although no significant differences were statistically observed. The K(m) values of microsomes from human livers and yeast cells expressing humCYP2E1 for CYP2E1-dependent oxidation were 822 and 627 microM for chlorzoxazone 6-hydroxylation, and 422 and 514 microM for 4-nitrophenol 2-hydroxylation, respectively. The K(m) values of microsomes from cynomolgus monkey livers and yeast cells expressing monCYP2E1 were not significantly different from those of humans in any enzyme source. V(max) and V(max)/K(m) values of human liver microsomes for CYP2E1-dependent oxidation were 909 pmol/min/mg protein and 1250 nl/min/mg protein for chlorzoxazone 6-hydroxylation, and 1250 pmol/min/mg protein and 2990 nl/min/mg protein for 4-nitrophenol 2-hydroxylation, respectively. The kinetic parameter values of cynomolgus monkey livers were comparable to or lower than those of human liver microsomes (49.5-102%). In yeast cell microsomes expressing humCYP2E1, V(max) and V(max)/K(m) values for CYP2E1-dependent oxidation on the basis of CYP holoprotein level were 170 pmol/min/pmol CYP and 272 nl/min/pmol CYP for chlorzoxazone 6-hydroxylation, and 139 pmol/min/pmol CYP and 277 nl/min/pmol CYP for 4-nitrophenol 2-hydroxylation, respectively, and the kinetic parameters of monCYP2E1 exhibited similar values. These findings suggest that human and cynomolgus monkey CYP2E1 enzymes have high homology in their amino acid sequences, and that their enzymatic properties are considerably similar. The information gained in this study should help with in vivo extrapolation and to assess the toxicity of xenobiotics.  相似文献   

3.
Three different in vitro mutation assays were used to investigate the involvement of cytochrome P450 enzymes in the activation of the nitro-polycyclic aromatic hydrocarbons (nitroPAHs) 1-nitropyrene and 2-nitrofluorene and their reduced metabolites amino-polycyclic aromatic hydrocarbons (aminoPAHs) 1-aminopyrene and 2-aminofluorene. Mutagenicity was investigated at the HPRT locus in Chinese hamster V79 cells with (V79-NH) or without (V79-MZ) endogenous acetyltransferase activity, stably expressing human cytochrome P450 cDNAs; in NIH/3T3 control or stably expressing human CYP1A2 cells, in combination with a shuttle vector containing a reporter gene; and in Salmonella typhimurium TA98, by inhibition of cytochrome P450 enzymes in rat liver S9 mix.Both the HPRT assay and the Ames test did not show any involvement of CYP3A in the activation of 1-nitropyrene to a mutagenic metabolite. In addition, a clear involvement of CYP1A2 in the activation of the nitroPAH 1-nitropyrene was demonstrated in both mutation assays using eukaryotic cells. However, no activation of 1-nitropyrene was seen in the eukaryotic cell lines when expressing only CYP1A2 (V79-MZ1A2) or acetyltransferase (V79-NH, 3T3-LNCX). The reduced metabolite of 1-nitropyrene, 1-aminopyrene, was also shown to be activated to a mutagenic metabolite by CYP1A2, using 3T3-1A2 cells in combination with a shuttle vector, and the Amestest in combination with the specific CYP1A2 inhibitor furafylline. No clear involvement of cytochrome P450 could be demonstrated for activation of 2-nitrofluorene to a mutagenic metabolite, whereas a role for CYP1A2 in the bioactivation of 2-aminofluorene is suggested.In the present study, we have demonstrated the complementary value of the three in vitro mutation assays in the examination of promutagen activation pathways.  相似文献   

4.
5.
The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have been measured in human liver microsomes. The three CYP isoenzymes, CYP2E1, CYP1A2 and CYP3A4, have been identified previously as important in the metabolism of this compound. To measure the constants for each isoenzyme, enzyme-specific inhibitory antibodies were used to block the activities for two of the three isoenzymes. CYP2E1 was found to have the lowest K(m), 2.9 microM, and the highest catalytic activity, k(cat). The K(m) for the other isoenzymes, CYP1A2 and CYP3A4, were about 60 microM with lower values of k(cat). Apparent kinetic constants obtained from two microsomal samples that were not inhibited were consistent with these results. In addition, 11 human microsome samples characterized for 10 CYP activities were correlated with the metabolism of 9.7 microM BDCM by each sample; statistical analysis showed a correlation with CYP2E1 activity only. This result is consistent with the finding that CYP2E1 is the only isoenzyme with a K(m) lower than the BDCM concentration used. The kinetic constants obtained from the inhibited microsomes were compared to similar results from recombinant human isoenzyme preparations containing only one CYP isoenzyme. The results for CYP2E1 were very similar, while the results for CYP1A2 were somewhat less similar and there was a substantial divergence for CYP3A4 in the two systems. Possible reasons for these differences are differing levels of CYP reductase and/or differing makeup of the membrane lipid environment for the CYPs. Because of the low levels of BDCM exposure from drinking water, it appears likely that CYP2E1 will dominate hepatic CYP-mediated BDCM metabolism in humans.  相似文献   

6.
Studies to identify the cytochrome P450 (CYP) isoform(s) involved in chlorpromazine 7-hydroxylation were performed using human liver microsomes and cDNA-expressed human CYPs. The kinetics of chlorpromazine 7-hydroxylation in human liver microsomes showed a simple Michaelis-Menten behavior. The apparent Km and Vmax values were 3.4+/-1.0 microM and 200.5+/-83.7 pmol/min/mg, respectively. The chlorpromazine 7-hydroxylase activity in human liver microsomes showed good correlations with desipramine 2-hydroxylase activity (r = 0.763, p < 0.05), a marker activity for CYP2D6, and phenacetin O-deethylase activity (r = 0.638, p < 0.05), a marker activity for CYP1A2. Quinidine (an inhibitor of CYP2D6) completely inhibited while alpha-naphthoflavone (an inhibitor of CYP1A2) marginally inhibited the chlorpromazine 7-hydroxylase activity in a human liver microsomal sample showing high CYP2D6 activity. On the other hand, alpha-naphthoflavone inhibited the chlorpromazine 7-hydroxylase activity to 55-65% of control in a human liver microsomal sample showing low CYP2D6 activity. Among eleven cDNA-expressed CYPs studied, CYP2D6 and CYP1A2 exhibited significant activity for the chlorpromazine 7-hydroxylation. The Km values for the chlorpromazine 7-hydroxylation of both cDNA-expressed CYP2D6 and CYP1A2 were in agreement with the Km values of human liver microsomes. These results suggest that chlorpromazine 7-hydroxylation is catalyzed mainly by CYP2D6 and partially by CYP1A2.  相似文献   

7.
Studies initiated to investigate the presence of cytochrome P4503A (CYP3A) isoenzymes in brain revealed constitutive mRNA and protein expression of CYP3A1 in rat brain. Western blotting studies showed that pretreatment with CYP3A inducer such as pregnenolone-16α -carbonitrile (PCN) significantly increased the cross reactivity comigrating with hepatic CYP3A1 and CYP3A2 in rat brain microsomes. RT-PCR studies have also shown increase in mRNA expression of CYP3A1 following pretreatment of rats with PCN. The ability of rat brain microsomes to catalyze the demethylation of erythromycin, known to be mediated by CYP3A isoenzymes in liver and significant increase in the activity of erythromycin demethylase (EMD) following pretreatment with dexamethasone or PCN have indicated that CYP3A isoenzymes expressed in brain are functionally active. Kinetic studies revealed that increase in the enzyme activity following pretreatment with PCN resulted in increase in the apparent affinity (Km) and Vmax of the reaction. Similarities in the inhibition of the constitutive and inducible brain and liver EMD activity following in vitro addition of ketoconazole, a inhibitor specific for CYP3A catalysed reactions and anti-CYP3A have further indicated that like in liver, CYP3A isoenzymes catalyse the activity of EMD in rat brain. Data also revealed regional differences in the activity of EMD in the brain. Relatively higher constitutive as well as inducible mRNA expression of CYP3A1 in hypothalamus and hippocampus, the brain regions responsive to steroid hormones have suggested that CYP3A isoenzymes may not only be involved in the process of detoxication mechanism but also in the metabolism of endogenous substrates in brain.  相似文献   

8.
Studies initiated to determine the expression of CYP1A1/1A2 isoenzymes in the primary cultures of rat brain neuronal and glial cells revealed significant activity of CYP1A-dependent 7-ethoxyresorufin-o-dealkylase (EROD) in microsomes prepared from both rat brain neuronal and glial cells. RT-PCR and immunocytochemical studies demonstrated constitutive mRNA and protein expression of CYP1A1 and 1A2 isoenzymes in cultured neuronal and glial cells. Cultured neurons exhibited relatively higher constitutive mRNA and protein expression of CYP1A1 and 1A2 isoenzymes, associated with higher activity of EROD than the glial cells. Induction studies with 3-methylchlorantherene (MC), a known CYP1A-inducer, resulted in significant concentration dependent increase in the activity of EROD in cultured rat brain cells with glial cells exhibiting a greater magnitude of induction than the neuronal cells. This difference in the increase in enzyme activity was also observed with RT-PCR and immunocytochemical studies, indicating relatively higher increase in CYP1A1 and 1A2 mRNA as well as protein expression in the cultured glial cells when compared to the neuronal cells. The greater magnitude of induction of CYP1A1 in glial cells is of significance, as these cells are components of the blood-brain barrier and it is suggested that they have a potential role in the toxication-detoxication mechanism. Our data indicating differences in the expression and sensitivity of CYP1A1 isoenzymes in cultured rat brain cells will not only help in identifying and distinguishing xenobiotic metabolizing capability of these cells but also in understanding the vulnerability of these specific cell types towards neurotoxicants.  相似文献   

9.
Norendoxifen, an active metabolite of tamoxifen, is a potent aromatase inhibitor. Little information is available regarding production of norendoxifen in vitro. Here, we conducted a series of kinetic and inhibition studies in human liver microsomes (HLMs) and expressed P450s to study the metabolic disposition of norendoxifen. To validate that norendoxifen was the metabolite of endoxifen, metabolites in HLMs incubates of endoxifen were measured using a HPLC/MS/MS method. To further probe the specific isoforms involved in the metabolic route, endoxifen was incubated with recombinant P450s (CYP 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4, 3A5 and CYP4A11). Formation rates of norendoxifen were evaluated in the absence and presence of P450 isoform specific inhibitors using HLMs. The peak of norendoxifen was found in the incubations consisting of endoxifen, HLMs, and cofactors. The retention times of norendoxifen, endoxifen, and the internal standard (diphenhydramine) were 7.81, 7.97, and 5.86 min, respectively. The Km (app) and Vmax (app) values of norendoxifen formation from endoxifen in HLM was 47.8 μm and 35.39 pmol min−1 mg−1. The apparent hepatic intrinsic clearances of norendoxifen formation were 0.74 μl mg−1 min. CYP3A5 and CYP2D6 were the major enzymes capable of norendoxifen formation from endoxifen with the rates of 0.26 and 0.86 pmol pmol−1 P450 × min. CYP1A2, 3A2, 2C9, and 2C19 also contributed to norendoxifen formation, but the contributions were at least 6‐fold lower. One micromolar ketoconazole (CYP3A inhibitor) showed an inhibitory effect on the rates of norendoxifen formation by 45%, but 1 μm quinidine (CYP2D6 inhibitor) does not show any inhibitory effect. Norendoxifen, metabolism from endoxifen by multiple P450s that including CYP3A5.  相似文献   

10.
The present study aimed to evaluate some cytochrome P450 metabolic enzyme activities in hepatic microsomes prepared from entire male pigs (uncastrated pigs), surgically castrated pigs and pigs immunized against gonadotropin-releasing hormone (immunocastrated pigs). The activities of the following enzymes were measured: ethoxyresorufin O-deethylase (EROD, CYP1A1/1A2), methoxyresorufin O-deethylase (MROD, CYP1A2), pentoxyresorufin O-depentylase (PROD, CYP2B), coumarin hydroxylase (COH, CYP2A) and p-nitrophenol hydroxylase (PNPH, CYP2A/2E1). The total cytochrome P450 contents were not affected by either surgical or immunocastration. Hepatic microsomal activities for EROD, PROD, COH and PNPH were lower in entire male pigs compared with surgically castrated and immunocastrated pigs (P < 0.05). Surgically and immunocastrated male pigs were similar with respect to EROD, MROD, PROD and COH activities (P > 0.05), whereas surgically castrated pigs exhibited lower PNPH activity compared with immunocastrated pigs (P = 0.029). The effect of different concentrations of testicular steroids - testosterone, 17β-estradiol, free estrone and androstenone - on enzyme activities was evaluated by in vitro microsomal study. Testosterone at the concentration of 8 pmol/ml inhibited EROD activities and estradiol-17β at the concentration of 1.8 pmol/ml inhibited PROD activities in hepatic microsomes from surgically castrated pigs. The highest concentration of androstenone (7520 pmol/ml) inhibited COH activities, whereas a 42-fold lower concentration of androstenone (180 pmol/ml) stimulated COH activities in surgically castrated pigs. Both free estrone (3.5 pmol/ml) and androstenone (55 pmol/ml) inhibited EROD activities in microsomes from entire male pigs. Stimulation of COH activities by the highest dose of free estrone (18 pmol/ml) was recorded in microsomes from entire male pigs. However, these effects of steroids were not concentration-dependent and the maximum extent did not exceed ±15% variation compared with the controls. There was no inhibition of PNPH activities in the hepatic microsomes from either entire or castrated pigs. In conclusion, we showed that EROD, PROD, COH and PNPH activities were lower in entire male pigs compared with those in surgically and immunocastrated pigs. Direct inhibition by the testicular steroids - testosterone, 17β-estradiol, free estrone and androstenone - was not the primary cause of the reduced enzyme activities.  相似文献   

11.
Concentrations of total cytochrome P450 and cytochrome P450 1A (CYP 1A) and activities of ethoxycoumarin O-deethylase (ECOD), ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-depentylase (PROD) were measured in the liver of prespawning, spawning and postspawning dab (Limanda limanda) from the German Bight. Between all P450-dependent parameters measured significant correlations were found. Generally, during prespawning and spawning season higher values were measured in the liver of males compared to females, but the ratio between sexes changed during spawning time, when concentrations and activities in the liver of males decreased and increased in the liver of females. The activity and the signal-to-noise ratio decrease in the order EROD, ECOD and PROD. This decrease is accompanied by an increase in Km. The findings indicate that the different activities can be attributed to the strongly overlapping substrate specificity and the different enzyme affinities of one enzyme, CYP 1A, towards the three substrates. A biphasic kinetic of ECOD indicates that in addition to CYP 1A a second isozyme catalyses the O-deethylation of ethoxycoumarin in the liver of dab. Interestingly, the ratio between EROD activity and CYP 1A concentration varied seasonally but did not differ significantly between sexes.  相似文献   

12.
【目的】研究有机磷杀虫剂毒死蜱对飞蝗体内细胞色素P450的影响。【方法】采用酶活力测定法和实时定量PCR技术分别研究了毒死蜱3种亚致死剂量(LD_(10)、LD_(30)和LD_(50))处理飞蝗3龄幼虫24 h后,体内细胞色素P450酶活性及CYP409A1和CYP408B1基因表达量的变化。【结果】不同亚致死剂量毒死蜱处理引起细胞色素P450活性显著性降低,分别为对照组的0.68、0.50和0.62倍。同时通过mRNA水平表达的差异比较显示,飞蝗的两个P450基因CYP409A1和CYP408B1的表达受到抑制,均出现表达量减少的现象。【结论】某些细胞色素P450基因表达受不同亚致死剂量毒死蜱的抑制而使酶的量被降低,从而造成飞蝗整体细胞色素P450酶活性的下降。  相似文献   

13.
Meranzin hydrate (MH), an absorbed bioactive compound from the Traditional Chinese Medicine (TCM) Chaihu-Shugan-San (CSS), was first isolated in our laboratory and was found to possess anti-depression activity. However, the role of cytochrome P450s (CYPs) in the metabolism of MH was unclear. In this study, we screened the CYPs for the metabolism of MH in vitro by human liver microsomes (HLMs) or human recombinant CYPs. MH inhibited the enzyme activities of CYP1A2 and CYP2C19 in a concentration-dependent manner in the HLMs. The Km and Vmax values of MH were 10.3±1.3 µM and 99.1±3.3 nmol/mg protein/min, respectively, for the HLMs; 8.0±1.6 µM and 112.4±5.7 nmol/nmol P450/min, respectively, for CYP1A2; and 25.9±6.6 µM and 134.3±12.4 nmol/nmol P450/min, respectively, for CYP2C19. Other human CYP isoforms including CYP2A6, CYP2C9, CYP2D6, CYP2E1 and CYP3A4 showed minimal or no effect on MH metabolism. The results suggested that MH was simultaneously a substrate and an inhibitor of CYP1A2 and CYP2C9, and MH had the potential to perpetrate drug-drug interactions with other CYP1A2 and CYP2C19 substrates.  相似文献   

14.
A novel cytochrome P450, CYP4x1, was identified in EST databases on the basis of similarity to a conserved region in the C-helix of the CYP4A family. The human and mouse CYP4x1 cDNAs were cloned and found to encode putative cytochrome P450 proteins. Molecular modelling of CYP4x1 predicted an unusual substrate binding channel for the CYP4 family. Expression of human CYP4x1 was detected in brain by EST analysis, and in aorta by northern blotting. The mouse cDNA was used to demonstrate that the Cyp4x RNA was expressed principally in brain, and at much lower levels in liver; hepatic levels of the Cyp4x1 RNA were not affected by treatment with the inducing agents phenobarbital, dioxin, dexamethasone or ciprofibrate, nor were the levels affected in PPARalpha-/- mice. A specific antibody for Cyp4x1 was developed, and shown to detect Cyp4x1 in brain; quantitation of the Cyp4x1 protein in brain demonstrated approximately 10 ng of Cyp4x1 protein.mg(-1) microsomal protein, showing that Cyp4x1 is a major brain P450. Immunohistochemical localization of the Cyp4x1 protein in brain showed specific staining of neurons, choroids epithelial cells and vascular endothelial cells. These data suggest an important role for Cyp4x1 in the brain.  相似文献   

15.
Characterization of xenobiotic metabolizing cytochrome P450s (P450s) was carried out in rat brain microsomes using the specific substrates, 7-pentoxy- and 7-ethoxyresorufin (PR and ER), metabolized in the liver by P450 2B1/2B2 and 1A1/1A2 respectively and 7-benzyloxyresorufin (BR), a substrate for both the isoenzymes. Brain microsomes catalysed the O-dealkylation of PR, BR and ER in the presence of NADPH. The ability to dealkylate alkoxyresorufins varied in different regions of the brain. Microsomes from the olfactory lobes exhibited maximum pentoxyresorufin-O-dealkylase (PROD), benzyloxyresorufin-O-dealkylase (BROD) and ethoxyresorufin-O-dealkylase (EROD) activities. The dealkylation was found to be inducer selective. While pretreatment with phenobarbital (PB; 80 mg/kg; i.p. × 5 days) resulted in significant induction in PROD (3-4 fold) and BROD (4-5 fold) activities, 3-methylcholanthrene (MC; 30 mg/kg; i.p. × 5 days) had no effect on the activity of PROD and only a slight effect on that of BROD (1.4 fold). MC pretreatment significantly induced the activity of EROD (3 fold) while PB had no effect on it. Kinetic studies have shown that this increase in the activities following pretreatment with P450 inducers was associated with a significant increase in the velocity of the reaction (Vmax) of O-dealkylation. In vitro studies using organic inhibitors and antibodies have further provided evidence that the O-dealkylation of alkoxyresorufins is isoenzyme specific. While in vitro addition of a-naphthoflavone (ANF), an inhibitor of P450 1A1/1A2 catalysed reactions and antibody for hepatic P450 1A1/1A2 isoenzymes produced a concentration-dependent inhibition of EROD activity, metyrapone, an inhibitor of P450 2B1/2B2 and antibody for hepatic P450 2B1/2B2 significantly inhibited the activity of PROD and BROD in vitro. The data suggest that, as in the case of liver, dealkylation of alkoxyresorufins can be used as a biochemical tool to characterise the xenobiotic metabolising P450s and substrate selectivity of P450 isoenzymes in rat brain microsomes.  相似文献   

16.
PCR with several pairs of primers facilitates screening for new isoenzymes among highly homologous cytochrome P450s (CYPs). Combinations of two pairs of primers, which amplify N- and C-terminal coding sequences of either CYP3A1/CYP3A23 or CYP3A2 detected the presence of a previously unrecognized CYP3A in enterocyte microsomes isolated from rats. PCR, Northern blot, and immunoblotting with specific antibodies indicated that this isoenzyme is clearly distinguishable from CYP3A1, 3A23 or 3A2. Sequencing of a 285 bp coding fragment of this gene revealed 97% similarity with rat olfactory CYP3A9 (P450olf3).  相似文献   

17.
A sensitive method for the determination of cytochrome P450 (P450 or CYP) 1A activities such as ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) in liver microsomes from human, monkey, rat and mouse by high-performance liquid chromatography with fluorescence detection is reported. The newly developed method was found to be more sensitive than previous methods using a spectrofluorimeter and fluorescence plate reader. The detection limit for resorufin (signal-to-noise ratio of 3) was 0.80 pmol/assay. Intra-day and inter-day precisions (expressed as relative standard deviation) were less than 6% for both enzyme activities. With this improved sensitivity, the kinetics of EROD and MROD activities in mammalian liver microsomes could be determined more precisely. EROD activities in human and monkey liver microsomes, and MROD activities in liver microsomes from all animal species exhibited a monophasic kinetic pattern, whereas the pattern of EROD activities in rat and mouse liver microsomes was biphasic. In addition, the method could determine the non-inducible and 3-methylcholanthrene-inducible activities of EROD and MROD in rat and mouse liver microsomes under the same assay conditions. Therefore, this method is applicable to in vivo and in vitro studies on the interaction of xenobiotic chemicals with cytochrome CYP1A isoforms in mammals.  相似文献   

18.
In this study, tetrahydrocannabinols (THCs) were mainly oxidized at the 11-position and allylic sites at the 7alpha-position for Delta(8)-THC and the 8beta-position for Delta(9)-THC by human hepatic microsomes. Cannabinol (CBN) was also mainly metabolized to 11-hydroxy-CBN and 8-hydroxy-CBN by the microsomes. The 11-hydroxylation of three cannabinoids by the microsomes was markedly inhibited by sulfaphenazole, a selective inhibitor of CYP2C enzymes, while the hydroxylations at the 7alpha-(Delta(8)-THC), 8beta-(Delta(9)-THC) and 8-positions (CBN) of the corresponding cannabinoids were highly inhibited by ketoconazole, a selective inhibitor of CYP3A enzymes. Human CYP2C9-Arg expressed in the microsomes of human B lymphoblastoid cells efficiently catalyzed the 11-hydroxylation of Delta(8)-THC (7.60 nmol/min/nmol CYP), Delta(9)-THC (19.2 nmol/min/nmol CYP) and CBN (6.62 nmol/min/nmol CYP). Human CYP3A4 expressed in the cells catalyzed the 7alpha-(5.34 nmol/min/nmol CYP) and 7beta-hydroxylation (1.39 nmol/min/nmol CYP) of Delta(8)-THC, the 8beta-hydroxylation (6.10 nmol/min/nmol CYP) and 9alpha,10alpha-epoxidation (1.71 nmol/min/nmol CYP) of Delta(9)-THC, and the 8-hydroxylation of CBN (1.45 nmol/min/nmol CYP). These results indicate that CYP2C9 and CYP3A4 are major enzymes involved in the 11-hydroxylation and the 8-(or the 7-) hydroxylation, respectively, of the cannabinoids by human hepatic microsomes. In addition, CYP3A4 is a major enzyme responsible for the 7alpha- and 7beta-hydroxylation of Delta(8)-THC, and the 9alpha,10alpha-epoxidation of Delta(9)-THC.  相似文献   

19.
Exposure to benzene was recently reported to lower the cytochrome P450 (CYP) content in phenobarbital-pretreated rats in vivo (Gut et al., Environ. Health Perspect. 104 (1996) 1211-1218). This study followed the ability of quinonic benzene metabolites (catechol, hydroquinone, and benzoquinone) to destroy CYP in liver microsomes from rats pretreated with various inducers and in human liver microsomes. Sensitivity of CYP isoforms to destruction was revealed and the interspecies differences assessed. The spectrophotometric evaluations of the total CYP content, assay of CYP marker activities, and electrophoresis with immunoblotting after incubation of microsomes with quinones revealed that: (1) rat liver CYP activities markedly differed in sensitivity to quinone-mediated destruction in vitro, CYP 1A and 3A being the most sensitive isoforms; (2) differences in OH radicals formation and lipid peroxidation among microsomes from rats pretreated with various CYP inducers were also observed; (3) semiquinone radical formation, OH radical production, and induction of lipid peroxidation did not contribute significantly to CYP destruction by quinones; (4) the main mechanism of CYP destruction is covalent binding of the oxidized quinone form to protein and heme moieties of CYP; (5) quinones, mainly benzoquinone, destroy human CYP isoforms to a much greater extent than rat enzymes and thus humans may be much more susceptible to the deleterious effect of benzene metabolism. In conclusion, it is suggested that CYP destruction may be another consequence of benzene exposure and should be taken into consideration when evaluations of possible health risks are performed.  相似文献   

20.
The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of “Shield-1” prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A94 since the CYP activity was significantly enhanced with co-expressed POR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号